Loading…
Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment
Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) cor...
Saved in:
Published in: | Swiss Journal of geosciences 2024-12, Vol.117 (1), p.22-15, Article 22 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 22 |
container_title | Swiss Journal of geosciences |
container_volume | 117 |
creator | Roethlin, Remo L Meister, Aurélia C E Gilli, Adrian Lennartz, Sinikka T Amsler, Helen Eri Dittrich, Maria Wehrli, Bernhard Schönbächler, Maria Dubois, Nathalie |
description | Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177
in front of the former silk factory to 0.05
at the southeast end (background: ca. 0.006
). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. < 0.5
) using dialyse plates show little Sn remobilisation into the lake water (0.05
). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production.
The online version contains supplementary material available at 10.1186/s00015-024-00471-6. |
doi_str_mv | 10.1186/s00015-024-00471-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0871076ed394a05b33ae0d238103fde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f0871076ed394a05b33ae0d238103fde</doaj_id><sourcerecordid>3149543597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi0EoqXwBzggS1w4NDCOP-JwQajio9JKXMqlF8uJ7a63Sbx4EqT-e5xuWVFOtsbvPJp3_BLymsF7xrT6gADAZAW1qABEwyr1hJwypVilGy6eHu-1OiEvEHcAstFMPScnvC1FxZtTcn0VJ9qnabZjnOwc00RLAb2Lo59mpCnQjb319HrJsd9-pJiW3PtzivvsrTun24hzynfUTo7miLfUInrEtfkleRbsgP7Vw3lGfn79cnXxvdr8-HZ58XlT9ZyLuXId7zhjtmMCZGh1aEKnQ-uE7ZkHUXfWg3Ot7HgtVKhZGyDoYsp5ZyUHxc_I5YHrkt2ZfY6jzXcm2WjuCynfGJvn2A_eBNANg0Z5x1thoTD5Sq-5ZsCD84X16cDaL93oXV9sZDs8gj5-meLW3KTfhpVday2hEN49EHL6tXiczRix98NgJ58WNJyJVgou26ZI3_4n3ZXtTmVXq0rrthFytVcfVH1OiNmH4zQMzJoDc8iBKTkw9zkwa9Obf30cW_5-PP8D-Qaueg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148897456</pqid></control><display><type>article</type><title>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Alma/SFX Local Collection</source><creator>Roethlin, Remo L ; Meister, Aurélia C E ; Gilli, Adrian ; Lennartz, Sinikka T ; Amsler, Helen Eri ; Dittrich, Maria ; Wehrli, Bernhard ; Schönbächler, Maria ; Dubois, Nathalie</creator><creatorcontrib>Roethlin, Remo L ; Meister, Aurélia C E ; Gilli, Adrian ; Lennartz, Sinikka T ; Amsler, Helen Eri ; Dittrich, Maria ; Wehrli, Bernhard ; Schönbächler, Maria ; Dubois, Nathalie</creatorcontrib><description>Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177
in front of the former silk factory to 0.05
at the southeast end (background: ca. 0.006
). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. < 0.5
) using dialyse plates show little Sn remobilisation into the lake water (0.05
). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production.
The online version contains supplementary material available at 10.1186/s00015-024-00471-6.</description><identifier>ISSN: 1661-8726</identifier><identifier>ISSN: 1661-8734</identifier><identifier>EISSN: 1661-8734</identifier><identifier>DOI: 10.1186/s00015-024-00471-6</identifier><identifier>PMID: 39726637</identifier><language>eng</language><publisher>Switzerland: Springer Nature B.V</publisher><subject>19th century ; Biota ; Chloride ; Contaminated sediments ; Contamination ; Drinking water ; Fluorescence ; Fluorescence spectroscopy ; Heavy metals ; Industrial areas ; Industrial Revolution ; Lake deposits ; Lake sediments ; Lake Zurich ; Lakes ; Plant layout ; Pore water ; Risk assessment ; Scanning electron microscopy ; Sediment ; Sediment pollution ; Sediments ; Silk ; Silk industry ; Spectroscopy ; Sulfides ; Sulphides ; Tin ; Tin compounds ; Toxicity ; Turbidites ; X ray fluorescence analysis ; X-ray fluorescence</subject><ispartof>Swiss Journal of geosciences, 2024-12, Vol.117 (1), p.22-15, Article 22</ispartof><rights>The Author(s) 2024.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39726637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roethlin, Remo L</creatorcontrib><creatorcontrib>Meister, Aurélia C E</creatorcontrib><creatorcontrib>Gilli, Adrian</creatorcontrib><creatorcontrib>Lennartz, Sinikka T</creatorcontrib><creatorcontrib>Amsler, Helen Eri</creatorcontrib><creatorcontrib>Dittrich, Maria</creatorcontrib><creatorcontrib>Wehrli, Bernhard</creatorcontrib><creatorcontrib>Schönbächler, Maria</creatorcontrib><creatorcontrib>Dubois, Nathalie</creatorcontrib><title>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</title><title>Swiss Journal of geosciences</title><addtitle>Swiss J Geosci</addtitle><description>Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177
in front of the former silk factory to 0.05
at the southeast end (background: ca. 0.006
). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. < 0.5
) using dialyse plates show little Sn remobilisation into the lake water (0.05
). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production.
The online version contains supplementary material available at 10.1186/s00015-024-00471-6.</description><subject>19th century</subject><subject>Biota</subject><subject>Chloride</subject><subject>Contaminated sediments</subject><subject>Contamination</subject><subject>Drinking water</subject><subject>Fluorescence</subject><subject>Fluorescence spectroscopy</subject><subject>Heavy metals</subject><subject>Industrial areas</subject><subject>Industrial Revolution</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Lake Zurich</subject><subject>Lakes</subject><subject>Plant layout</subject><subject>Pore water</subject><subject>Risk assessment</subject><subject>Scanning electron microscopy</subject><subject>Sediment</subject><subject>Sediment pollution</subject><subject>Sediments</subject><subject>Silk</subject><subject>Silk industry</subject><subject>Spectroscopy</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Tin</subject><subject>Tin compounds</subject><subject>Toxicity</subject><subject>Turbidites</subject><subject>X ray fluorescence analysis</subject><subject>X-ray fluorescence</subject><issn>1661-8726</issn><issn>1661-8734</issn><issn>1661-8734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhi0EoqXwBzggS1w4NDCOP-JwQajio9JKXMqlF8uJ7a63Sbx4EqT-e5xuWVFOtsbvPJp3_BLymsF7xrT6gADAZAW1qABEwyr1hJwypVilGy6eHu-1OiEvEHcAstFMPScnvC1FxZtTcn0VJ9qnabZjnOwc00RLAb2Lo59mpCnQjb319HrJsd9-pJiW3PtzivvsrTun24hzynfUTo7miLfUInrEtfkleRbsgP7Vw3lGfn79cnXxvdr8-HZ58XlT9ZyLuXId7zhjtmMCZGh1aEKnQ-uE7ZkHUXfWg3Ot7HgtVKhZGyDoYsp5ZyUHxc_I5YHrkt2ZfY6jzXcm2WjuCynfGJvn2A_eBNANg0Z5x1thoTD5Sq-5ZsCD84X16cDaL93oXV9sZDs8gj5-meLW3KTfhpVday2hEN49EHL6tXiczRix98NgJ58WNJyJVgou26ZI3_4n3ZXtTmVXq0rrthFytVcfVH1OiNmH4zQMzJoDc8iBKTkw9zkwa9Obf30cW_5-PP8D-Qaueg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Roethlin, Remo L</creator><creator>Meister, Aurélia C E</creator><creator>Gilli, Adrian</creator><creator>Lennartz, Sinikka T</creator><creator>Amsler, Helen Eri</creator><creator>Dittrich, Maria</creator><creator>Wehrli, Bernhard</creator><creator>Schönbächler, Maria</creator><creator>Dubois, Nathalie</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><general>SpringerOpen</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</title><author>Roethlin, Remo L ; Meister, Aurélia C E ; Gilli, Adrian ; Lennartz, Sinikka T ; Amsler, Helen Eri ; Dittrich, Maria ; Wehrli, Bernhard ; Schönbächler, Maria ; Dubois, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>19th century</topic><topic>Biota</topic><topic>Chloride</topic><topic>Contaminated sediments</topic><topic>Contamination</topic><topic>Drinking water</topic><topic>Fluorescence</topic><topic>Fluorescence spectroscopy</topic><topic>Heavy metals</topic><topic>Industrial areas</topic><topic>Industrial Revolution</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Lake Zurich</topic><topic>Lakes</topic><topic>Plant layout</topic><topic>Pore water</topic><topic>Risk assessment</topic><topic>Scanning electron microscopy</topic><topic>Sediment</topic><topic>Sediment pollution</topic><topic>Sediments</topic><topic>Silk</topic><topic>Silk industry</topic><topic>Spectroscopy</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Tin</topic><topic>Tin compounds</topic><topic>Toxicity</topic><topic>Turbidites</topic><topic>X ray fluorescence analysis</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roethlin, Remo L</creatorcontrib><creatorcontrib>Meister, Aurélia C E</creatorcontrib><creatorcontrib>Gilli, Adrian</creatorcontrib><creatorcontrib>Lennartz, Sinikka T</creatorcontrib><creatorcontrib>Amsler, Helen Eri</creatorcontrib><creatorcontrib>Dittrich, Maria</creatorcontrib><creatorcontrib>Wehrli, Bernhard</creatorcontrib><creatorcontrib>Schönbächler, Maria</creatorcontrib><creatorcontrib>Dubois, Nathalie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Swiss Journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roethlin, Remo L</au><au>Meister, Aurélia C E</au><au>Gilli, Adrian</au><au>Lennartz, Sinikka T</au><au>Amsler, Helen Eri</au><au>Dittrich, Maria</au><au>Wehrli, Bernhard</au><au>Schönbächler, Maria</au><au>Dubois, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</atitle><jtitle>Swiss Journal of geosciences</jtitle><addtitle>Swiss J Geosci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>117</volume><issue>1</issue><spage>22</spage><epage>15</epage><pages>22-15</pages><artnum>22</artnum><issn>1661-8726</issn><issn>1661-8734</issn><eissn>1661-8734</eissn><abstract>Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177
in front of the former silk factory to 0.05
at the southeast end (background: ca. 0.006
). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. < 0.5
) using dialyse plates show little Sn remobilisation into the lake water (0.05
). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production.
The online version contains supplementary material available at 10.1186/s00015-024-00471-6.</abstract><cop>Switzerland</cop><pub>Springer Nature B.V</pub><pmid>39726637</pmid><doi>10.1186/s00015-024-00471-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8726 |
ispartof | Swiss Journal of geosciences, 2024-12, Vol.117 (1), p.22-15, Article 22 |
issn | 1661-8726 1661-8734 1661-8734 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f0871076ed394a05b33ae0d238103fde |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Alma/SFX Local Collection |
subjects | 19th century Biota Chloride Contaminated sediments Contamination Drinking water Fluorescence Fluorescence spectroscopy Heavy metals Industrial areas Industrial Revolution Lake deposits Lake sediments Lake Zurich Lakes Plant layout Pore water Risk assessment Scanning electron microscopy Sediment Sediment pollution Sediments Silk Silk industry Spectroscopy Sulfides Sulphides Tin Tin compounds Toxicity Turbidites X ray fluorescence analysis X-ray fluorescence |
title | Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20contamination%20in%20sediments%20of%20Lake%20Zurich:%20source,%20spread,%20history%20and%20risk%20assessment&rft.jtitle=Swiss%20Journal%20of%20geosciences&rft.au=Roethlin,%20Remo%20L&rft.date=2024-12-01&rft.volume=117&rft.issue=1&rft.spage=22&rft.epage=15&rft.pages=22-15&rft.artnum=22&rft.issn=1661-8726&rft.eissn=1661-8734&rft_id=info:doi/10.1186/s00015-024-00471-6&rft_dat=%3Cproquest_doaj_%3E3149543597%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148897456&rft_id=info:pmid/39726637&rfr_iscdi=true |