Loading…

Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment

Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) cor...

Full description

Saved in:
Bibliographic Details
Published in:Swiss Journal of geosciences 2024-12, Vol.117 (1), p.22-15, Article 22
Main Authors: Roethlin, Remo L, Meister, Aurélia C E, Gilli, Adrian, Lennartz, Sinikka T, Amsler, Helen Eri, Dittrich, Maria, Wehrli, Bernhard, Schönbächler, Maria, Dubois, Nathalie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063
container_end_page 15
container_issue 1
container_start_page 22
container_title Swiss Journal of geosciences
container_volume 117
creator Roethlin, Remo L
Meister, Aurélia C E
Gilli, Adrian
Lennartz, Sinikka T
Amsler, Helen Eri
Dittrich, Maria
Wehrli, Bernhard
Schönbächler, Maria
Dubois, Nathalie
description Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177  in front of the former silk factory to 0.05  at the southeast end (background: ca. 0.006  ). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. < 0.5  ) using dialyse plates show little Sn remobilisation into the lake water (0.05  ). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production. The online version contains supplementary material available at 10.1186/s00015-024-00471-6.
doi_str_mv 10.1186/s00015-024-00471-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0871076ed394a05b33ae0d238103fde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f0871076ed394a05b33ae0d238103fde</doaj_id><sourcerecordid>3149543597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi0EoqXwBzggS1w4NDCOP-JwQajio9JKXMqlF8uJ7a63Sbx4EqT-e5xuWVFOtsbvPJp3_BLymsF7xrT6gADAZAW1qABEwyr1hJwypVilGy6eHu-1OiEvEHcAstFMPScnvC1FxZtTcn0VJ9qnabZjnOwc00RLAb2Lo59mpCnQjb319HrJsd9-pJiW3PtzivvsrTun24hzynfUTo7miLfUInrEtfkleRbsgP7Vw3lGfn79cnXxvdr8-HZ58XlT9ZyLuXId7zhjtmMCZGh1aEKnQ-uE7ZkHUXfWg3Ot7HgtVKhZGyDoYsp5ZyUHxc_I5YHrkt2ZfY6jzXcm2WjuCynfGJvn2A_eBNANg0Z5x1thoTD5Sq-5ZsCD84X16cDaL93oXV9sZDs8gj5-meLW3KTfhpVday2hEN49EHL6tXiczRix98NgJ58WNJyJVgou26ZI3_4n3ZXtTmVXq0rrthFytVcfVH1OiNmH4zQMzJoDc8iBKTkw9zkwa9Obf30cW_5-PP8D-Qaueg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148897456</pqid></control><display><type>article</type><title>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Alma/SFX Local Collection</source><creator>Roethlin, Remo L ; Meister, Aurélia C E ; Gilli, Adrian ; Lennartz, Sinikka T ; Amsler, Helen Eri ; Dittrich, Maria ; Wehrli, Bernhard ; Schönbächler, Maria ; Dubois, Nathalie</creator><creatorcontrib>Roethlin, Remo L ; Meister, Aurélia C E ; Gilli, Adrian ; Lennartz, Sinikka T ; Amsler, Helen Eri ; Dittrich, Maria ; Wehrli, Bernhard ; Schönbächler, Maria ; Dubois, Nathalie</creatorcontrib><description>Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177  in front of the former silk factory to 0.05  at the southeast end (background: ca. 0.006  ). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. &lt; 0.5  ) using dialyse plates show little Sn remobilisation into the lake water (0.05  ). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production. The online version contains supplementary material available at 10.1186/s00015-024-00471-6.</description><identifier>ISSN: 1661-8726</identifier><identifier>ISSN: 1661-8734</identifier><identifier>EISSN: 1661-8734</identifier><identifier>DOI: 10.1186/s00015-024-00471-6</identifier><identifier>PMID: 39726637</identifier><language>eng</language><publisher>Switzerland: Springer Nature B.V</publisher><subject>19th century ; Biota ; Chloride ; Contaminated sediments ; Contamination ; Drinking water ; Fluorescence ; Fluorescence spectroscopy ; Heavy metals ; Industrial areas ; Industrial Revolution ; Lake deposits ; Lake sediments ; Lake Zurich ; Lakes ; Plant layout ; Pore water ; Risk assessment ; Scanning electron microscopy ; Sediment ; Sediment pollution ; Sediments ; Silk ; Silk industry ; Spectroscopy ; Sulfides ; Sulphides ; Tin ; Tin compounds ; Toxicity ; Turbidites ; X ray fluorescence analysis ; X-ray fluorescence</subject><ispartof>Swiss Journal of geosciences, 2024-12, Vol.117 (1), p.22-15, Article 22</ispartof><rights>The Author(s) 2024.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39726637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roethlin, Remo L</creatorcontrib><creatorcontrib>Meister, Aurélia C E</creatorcontrib><creatorcontrib>Gilli, Adrian</creatorcontrib><creatorcontrib>Lennartz, Sinikka T</creatorcontrib><creatorcontrib>Amsler, Helen Eri</creatorcontrib><creatorcontrib>Dittrich, Maria</creatorcontrib><creatorcontrib>Wehrli, Bernhard</creatorcontrib><creatorcontrib>Schönbächler, Maria</creatorcontrib><creatorcontrib>Dubois, Nathalie</creatorcontrib><title>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</title><title>Swiss Journal of geosciences</title><addtitle>Swiss J Geosci</addtitle><description>Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177  in front of the former silk factory to 0.05  at the southeast end (background: ca. 0.006  ). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. &lt; 0.5  ) using dialyse plates show little Sn remobilisation into the lake water (0.05  ). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production. The online version contains supplementary material available at 10.1186/s00015-024-00471-6.</description><subject>19th century</subject><subject>Biota</subject><subject>Chloride</subject><subject>Contaminated sediments</subject><subject>Contamination</subject><subject>Drinking water</subject><subject>Fluorescence</subject><subject>Fluorescence spectroscopy</subject><subject>Heavy metals</subject><subject>Industrial areas</subject><subject>Industrial Revolution</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Lake Zurich</subject><subject>Lakes</subject><subject>Plant layout</subject><subject>Pore water</subject><subject>Risk assessment</subject><subject>Scanning electron microscopy</subject><subject>Sediment</subject><subject>Sediment pollution</subject><subject>Sediments</subject><subject>Silk</subject><subject>Silk industry</subject><subject>Spectroscopy</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Tin</subject><subject>Tin compounds</subject><subject>Toxicity</subject><subject>Turbidites</subject><subject>X ray fluorescence analysis</subject><subject>X-ray fluorescence</subject><issn>1661-8726</issn><issn>1661-8734</issn><issn>1661-8734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhi0EoqXwBzggS1w4NDCOP-JwQajio9JKXMqlF8uJ7a63Sbx4EqT-e5xuWVFOtsbvPJp3_BLymsF7xrT6gADAZAW1qABEwyr1hJwypVilGy6eHu-1OiEvEHcAstFMPScnvC1FxZtTcn0VJ9qnabZjnOwc00RLAb2Lo59mpCnQjb319HrJsd9-pJiW3PtzivvsrTun24hzynfUTo7miLfUInrEtfkleRbsgP7Vw3lGfn79cnXxvdr8-HZ58XlT9ZyLuXId7zhjtmMCZGh1aEKnQ-uE7ZkHUXfWg3Ot7HgtVKhZGyDoYsp5ZyUHxc_I5YHrkt2ZfY6jzXcm2WjuCynfGJvn2A_eBNANg0Z5x1thoTD5Sq-5ZsCD84X16cDaL93oXV9sZDs8gj5-meLW3KTfhpVday2hEN49EHL6tXiczRix98NgJ58WNJyJVgou26ZI3_4n3ZXtTmVXq0rrthFytVcfVH1OiNmH4zQMzJoDc8iBKTkw9zkwa9Obf30cW_5-PP8D-Qaueg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Roethlin, Remo L</creator><creator>Meister, Aurélia C E</creator><creator>Gilli, Adrian</creator><creator>Lennartz, Sinikka T</creator><creator>Amsler, Helen Eri</creator><creator>Dittrich, Maria</creator><creator>Wehrli, Bernhard</creator><creator>Schönbächler, Maria</creator><creator>Dubois, Nathalie</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><general>SpringerOpen</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</title><author>Roethlin, Remo L ; Meister, Aurélia C E ; Gilli, Adrian ; Lennartz, Sinikka T ; Amsler, Helen Eri ; Dittrich, Maria ; Wehrli, Bernhard ; Schönbächler, Maria ; Dubois, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>19th century</topic><topic>Biota</topic><topic>Chloride</topic><topic>Contaminated sediments</topic><topic>Contamination</topic><topic>Drinking water</topic><topic>Fluorescence</topic><topic>Fluorescence spectroscopy</topic><topic>Heavy metals</topic><topic>Industrial areas</topic><topic>Industrial Revolution</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Lake Zurich</topic><topic>Lakes</topic><topic>Plant layout</topic><topic>Pore water</topic><topic>Risk assessment</topic><topic>Scanning electron microscopy</topic><topic>Sediment</topic><topic>Sediment pollution</topic><topic>Sediments</topic><topic>Silk</topic><topic>Silk industry</topic><topic>Spectroscopy</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Tin</topic><topic>Tin compounds</topic><topic>Toxicity</topic><topic>Turbidites</topic><topic>X ray fluorescence analysis</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roethlin, Remo L</creatorcontrib><creatorcontrib>Meister, Aurélia C E</creatorcontrib><creatorcontrib>Gilli, Adrian</creatorcontrib><creatorcontrib>Lennartz, Sinikka T</creatorcontrib><creatorcontrib>Amsler, Helen Eri</creatorcontrib><creatorcontrib>Dittrich, Maria</creatorcontrib><creatorcontrib>Wehrli, Bernhard</creatorcontrib><creatorcontrib>Schönbächler, Maria</creatorcontrib><creatorcontrib>Dubois, Nathalie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Swiss Journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roethlin, Remo L</au><au>Meister, Aurélia C E</au><au>Gilli, Adrian</au><au>Lennartz, Sinikka T</au><au>Amsler, Helen Eri</au><au>Dittrich, Maria</au><au>Wehrli, Bernhard</au><au>Schönbächler, Maria</au><au>Dubois, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment</atitle><jtitle>Swiss Journal of geosciences</jtitle><addtitle>Swiss J Geosci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>117</volume><issue>1</issue><spage>22</spage><epage>15</epage><pages>22-15</pages><artnum>22</artnum><issn>1661-8726</issn><issn>1661-8734</issn><eissn>1661-8734</eissn><abstract>Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column. We found elevated Sn levels throughout sediments of Lake Zurich, ranging from 177  in front of the former silk factory to 0.05  at the southeast end (background: ca. 0.006  ). The rapid concentration drop away from the shore suggests quick precipitation of a sparingly soluble inorganic Sn compound, which is confirmed by Scanning Electron Microscope Imaging in tandem with Energy-dispersive XRF spectroscopy (SEM-EDX) data. The Sn XRF profile of a varved core indicates a contamination onset in the early 1890s, a maximum around 1900, and a gradual decrease to low levels in the 1940s. High Sn concentrations in turbidite layers from the deep basin indicate that mass movements physically remobilised Sn. However, in stable conditions, in-situ porewater measurements (conc. &lt; 0.5  ) using dialyse plates show little Sn remobilisation into the lake water (0.05  ). The low remobilisation, reducing conditions, and high sulphide contents in the contaminated layers suggest that Sn is firmly bound to the sediments. Combined with the low toxicity of Sn, we conclude that the Sn contamination poses no threat to lake biota or drinking water production. The online version contains supplementary material available at 10.1186/s00015-024-00471-6.</abstract><cop>Switzerland</cop><pub>Springer Nature B.V</pub><pmid>39726637</pmid><doi>10.1186/s00015-024-00471-6</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-8726
ispartof Swiss Journal of geosciences, 2024-12, Vol.117 (1), p.22-15, Article 22
issn 1661-8726
1661-8734
1661-8734
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f0871076ed394a05b33ae0d238103fde
source Springer Nature - SpringerLink Journals - Fully Open Access ; Alma/SFX Local Collection
subjects 19th century
Biota
Chloride
Contaminated sediments
Contamination
Drinking water
Fluorescence
Fluorescence spectroscopy
Heavy metals
Industrial areas
Industrial Revolution
Lake deposits
Lake sediments
Lake Zurich
Lakes
Plant layout
Pore water
Risk assessment
Scanning electron microscopy
Sediment
Sediment pollution
Sediments
Silk
Silk industry
Spectroscopy
Sulfides
Sulphides
Tin
Tin compounds
Toxicity
Turbidites
X ray fluorescence analysis
X-ray fluorescence
title Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20contamination%20in%20sediments%20of%20Lake%20Zurich:%20source,%20spread,%20history%20and%20risk%20assessment&rft.jtitle=Swiss%20Journal%20of%20geosciences&rft.au=Roethlin,%20Remo%20L&rft.date=2024-12-01&rft.volume=117&rft.issue=1&rft.spage=22&rft.epage=15&rft.pages=22-15&rft.artnum=22&rft.issn=1661-8726&rft.eissn=1661-8734&rft_id=info:doi/10.1186/s00015-024-00471-6&rft_dat=%3Cproquest_doaj_%3E3149543597%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-db3b311ab1405f98f7fb8f9d4ac1e042bae0dd95b3246f219f0f8872deda53063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3148897456&rft_id=info:pmid/39726637&rfr_iscdi=true