Loading…

The Machine-Part Cell Formation Problem with Non-Binary Values: A MILP Model and a Case of Study in the Accounting Profession

The traditional machine-part cell formation problem simultaneously clusters machines and parts in different production cells from a zero–one incidence matrix that describes the existing interactions between the elements. This manuscript explores a novel alternative for the well-known machine-part ce...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2021-08, Vol.9 (15), p.1768
Main Authors: del Pozo-Antúnez, Jose Joaquin, Fernández-Navarro, Francisco, Molina-Sánchez, Horacio, Ariza-Montes, Antonio, Carbonero-Ruz, Mariano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-c960e8f4619c719ace17fb5a7dc7af576f527d27fcdada88785940b3e4f987843
cites cdi_FETCH-LOGICAL-c364t-c960e8f4619c719ace17fb5a7dc7af576f527d27fcdada88785940b3e4f987843
container_end_page
container_issue 15
container_start_page 1768
container_title Mathematics (Basel)
container_volume 9
creator del Pozo-Antúnez, Jose Joaquin
Fernández-Navarro, Francisco
Molina-Sánchez, Horacio
Ariza-Montes, Antonio
Carbonero-Ruz, Mariano
description The traditional machine-part cell formation problem simultaneously clusters machines and parts in different production cells from a zero–one incidence matrix that describes the existing interactions between the elements. This manuscript explores a novel alternative for the well-known machine-part cell formation problem in which the incidence matrix is composed of non-binary values. The model is presented as multiple-ratio fractional programming with binary variables in quadratic terms. A simple reformulation is also implemented in the manuscript to express the model as a mixed-integer linear programming optimization problem. The performance of the proposed model is shown through two types of empirical experiments. In the first group of experiments, the model is tested with a set of randomized matrices, and its performance is compared to the one obtained with a standard greedy algorithm. These experiments showed that the proposed model achieves higher fitness values in all matrices considered than the greedy algorithm. In the second type of experiment, the optimization model is evaluated with a real-world problem belonging to Human Resource Management. The results obtained were in line with previous findings described in the literature about the case study.
doi_str_mv 10.3390/math9151768
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f09db8c27653480381dde33d7113c7eb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f09db8c27653480381dde33d7113c7eb</doaj_id><sourcerecordid>2558846166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c960e8f4619c719ace17fb5a7dc7af576f527d27fcdada88785940b3e4f987843</originalsourceid><addsrcrecordid>eNpNkUtLAzEQxxdRUKonv8CAR1ndbHY3ibdarBZaLfi4hmweNmWb1GSL9OB3N7UizmUeDL__PLLsHBVXGLPieiX6BUM1Ig09yE7KsiQ5SfXDf_FxdhbjskjGEKYVO8m-XhYaZkIurNP5XIQeRrrrYOxDwlnvYB582-kVfNp-AY_e5bfWibCFN9FtdLyBIcwm0znMvNIdCKdAwEhEDd7Ac79RW7AO-qQxlNJvXG_d-w5pdIyJfpodGdFFffbrB9nr-O5l9JBPn-4no-E0l7ip-lyyptDUVA1ikiAmpEbEtLUgShJhatKYuiSqJEYqoQSlhNasKlqsK8NSUuFBNtlzlRdLvg52lVbgXlj-U_DhnafVrew0NwVTLZUlaWpc0QJTpJTGWBGEsCS6TayLPWsd_Ec6Qc-XfhNcGp-XdU1pmrJpUtflvksGH2PQ5k8VFXz3Lv7vXfgbraOGvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558846166</pqid></control><display><type>article</type><title>The Machine-Part Cell Formation Problem with Non-Binary Values: A MILP Model and a Case of Study in the Accounting Profession</title><source>ProQuest - Publicly Available Content Database</source><creator>del Pozo-Antúnez, Jose Joaquin ; Fernández-Navarro, Francisco ; Molina-Sánchez, Horacio ; Ariza-Montes, Antonio ; Carbonero-Ruz, Mariano</creator><creatorcontrib>del Pozo-Antúnez, Jose Joaquin ; Fernández-Navarro, Francisco ; Molina-Sánchez, Horacio ; Ariza-Montes, Antonio ; Carbonero-Ruz, Mariano</creatorcontrib><description>The traditional machine-part cell formation problem simultaneously clusters machines and parts in different production cells from a zero–one incidence matrix that describes the existing interactions between the elements. This manuscript explores a novel alternative for the well-known machine-part cell formation problem in which the incidence matrix is composed of non-binary values. The model is presented as multiple-ratio fractional programming with binary variables in quadratic terms. A simple reformulation is also implemented in the manuscript to express the model as a mixed-integer linear programming optimization problem. The performance of the proposed model is shown through two types of empirical experiments. In the first group of experiments, the model is tested with a set of randomized matrices, and its performance is compared to the one obtained with a standard greedy algorithm. These experiments showed that the proposed model achieves higher fitness values in all matrices considered than the greedy algorithm. In the second type of experiment, the optimization model is evaluated with a real-world problem belonging to Human Resource Management. The results obtained were in line with previous findings described in the literature about the case study.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9151768</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accounting ; Algorithms ; Annual reports ; Artificial intelligence ; Business metrics ; Employees ; Food science ; fractional 0–1 programming ; Greedy algorithms ; Group technology ; Human resource management ; human resources management ; Integer programming ; Linear programming ; machine-part cell formation problem ; Manufacturing ; Mathematical programming ; Mixed integer ; mixed-integer linear programming ; Model testing ; Optimization</subject><ispartof>Mathematics (Basel), 2021-08, Vol.9 (15), p.1768</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c960e8f4619c719ace17fb5a7dc7af576f527d27fcdada88785940b3e4f987843</citedby><cites>FETCH-LOGICAL-c364t-c960e8f4619c719ace17fb5a7dc7af576f527d27fcdada88785940b3e4f987843</cites><orcidid>0000-0002-5921-0753 ; 0000-0001-6042-0005 ; 0000-0002-5599-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2558846166/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2558846166?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>del Pozo-Antúnez, Jose Joaquin</creatorcontrib><creatorcontrib>Fernández-Navarro, Francisco</creatorcontrib><creatorcontrib>Molina-Sánchez, Horacio</creatorcontrib><creatorcontrib>Ariza-Montes, Antonio</creatorcontrib><creatorcontrib>Carbonero-Ruz, Mariano</creatorcontrib><title>The Machine-Part Cell Formation Problem with Non-Binary Values: A MILP Model and a Case of Study in the Accounting Profession</title><title>Mathematics (Basel)</title><description>The traditional machine-part cell formation problem simultaneously clusters machines and parts in different production cells from a zero–one incidence matrix that describes the existing interactions between the elements. This manuscript explores a novel alternative for the well-known machine-part cell formation problem in which the incidence matrix is composed of non-binary values. The model is presented as multiple-ratio fractional programming with binary variables in quadratic terms. A simple reformulation is also implemented in the manuscript to express the model as a mixed-integer linear programming optimization problem. The performance of the proposed model is shown through two types of empirical experiments. In the first group of experiments, the model is tested with a set of randomized matrices, and its performance is compared to the one obtained with a standard greedy algorithm. These experiments showed that the proposed model achieves higher fitness values in all matrices considered than the greedy algorithm. In the second type of experiment, the optimization model is evaluated with a real-world problem belonging to Human Resource Management. The results obtained were in line with previous findings described in the literature about the case study.</description><subject>Accounting</subject><subject>Algorithms</subject><subject>Annual reports</subject><subject>Artificial intelligence</subject><subject>Business metrics</subject><subject>Employees</subject><subject>Food science</subject><subject>fractional 0–1 programming</subject><subject>Greedy algorithms</subject><subject>Group technology</subject><subject>Human resource management</subject><subject>human resources management</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>machine-part cell formation problem</subject><subject>Manufacturing</subject><subject>Mathematical programming</subject><subject>Mixed integer</subject><subject>mixed-integer linear programming</subject><subject>Model testing</subject><subject>Optimization</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEQxxdRUKonv8CAR1ndbHY3ibdarBZaLfi4hmweNmWb1GSL9OB3N7UizmUeDL__PLLsHBVXGLPieiX6BUM1Ig09yE7KsiQ5SfXDf_FxdhbjskjGEKYVO8m-XhYaZkIurNP5XIQeRrrrYOxDwlnvYB582-kVfNp-AY_e5bfWibCFN9FtdLyBIcwm0znMvNIdCKdAwEhEDd7Ac79RW7AO-qQxlNJvXG_d-w5pdIyJfpodGdFFffbrB9nr-O5l9JBPn-4no-E0l7ip-lyyptDUVA1ikiAmpEbEtLUgShJhatKYuiSqJEYqoQSlhNasKlqsK8NSUuFBNtlzlRdLvg52lVbgXlj-U_DhnafVrew0NwVTLZUlaWpc0QJTpJTGWBGEsCS6TayLPWsd_Ec6Qc-XfhNcGp-XdU1pmrJpUtflvksGH2PQ5k8VFXz3Lv7vXfgbraOGvA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>del Pozo-Antúnez, Jose Joaquin</creator><creator>Fernández-Navarro, Francisco</creator><creator>Molina-Sánchez, Horacio</creator><creator>Ariza-Montes, Antonio</creator><creator>Carbonero-Ruz, Mariano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5921-0753</orcidid><orcidid>https://orcid.org/0000-0001-6042-0005</orcidid><orcidid>https://orcid.org/0000-0002-5599-6170</orcidid></search><sort><creationdate>20210801</creationdate><title>The Machine-Part Cell Formation Problem with Non-Binary Values: A MILP Model and a Case of Study in the Accounting Profession</title><author>del Pozo-Antúnez, Jose Joaquin ; Fernández-Navarro, Francisco ; Molina-Sánchez, Horacio ; Ariza-Montes, Antonio ; Carbonero-Ruz, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c960e8f4619c719ace17fb5a7dc7af576f527d27fcdada88785940b3e4f987843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accounting</topic><topic>Algorithms</topic><topic>Annual reports</topic><topic>Artificial intelligence</topic><topic>Business metrics</topic><topic>Employees</topic><topic>Food science</topic><topic>fractional 0–1 programming</topic><topic>Greedy algorithms</topic><topic>Group technology</topic><topic>Human resource management</topic><topic>human resources management</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>machine-part cell formation problem</topic><topic>Manufacturing</topic><topic>Mathematical programming</topic><topic>Mixed integer</topic><topic>mixed-integer linear programming</topic><topic>Model testing</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>del Pozo-Antúnez, Jose Joaquin</creatorcontrib><creatorcontrib>Fernández-Navarro, Francisco</creatorcontrib><creatorcontrib>Molina-Sánchez, Horacio</creatorcontrib><creatorcontrib>Ariza-Montes, Antonio</creatorcontrib><creatorcontrib>Carbonero-Ruz, Mariano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>del Pozo-Antúnez, Jose Joaquin</au><au>Fernández-Navarro, Francisco</au><au>Molina-Sánchez, Horacio</au><au>Ariza-Montes, Antonio</au><au>Carbonero-Ruz, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Machine-Part Cell Formation Problem with Non-Binary Values: A MILP Model and a Case of Study in the Accounting Profession</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>9</volume><issue>15</issue><spage>1768</spage><pages>1768-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The traditional machine-part cell formation problem simultaneously clusters machines and parts in different production cells from a zero–one incidence matrix that describes the existing interactions between the elements. This manuscript explores a novel alternative for the well-known machine-part cell formation problem in which the incidence matrix is composed of non-binary values. The model is presented as multiple-ratio fractional programming with binary variables in quadratic terms. A simple reformulation is also implemented in the manuscript to express the model as a mixed-integer linear programming optimization problem. The performance of the proposed model is shown through two types of empirical experiments. In the first group of experiments, the model is tested with a set of randomized matrices, and its performance is compared to the one obtained with a standard greedy algorithm. These experiments showed that the proposed model achieves higher fitness values in all matrices considered than the greedy algorithm. In the second type of experiment, the optimization model is evaluated with a real-world problem belonging to Human Resource Management. The results obtained were in line with previous findings described in the literature about the case study.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9151768</doi><orcidid>https://orcid.org/0000-0002-5921-0753</orcidid><orcidid>https://orcid.org/0000-0001-6042-0005</orcidid><orcidid>https://orcid.org/0000-0002-5599-6170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2021-08, Vol.9 (15), p.1768
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f09db8c27653480381dde33d7113c7eb
source ProQuest - Publicly Available Content Database
subjects Accounting
Algorithms
Annual reports
Artificial intelligence
Business metrics
Employees
Food science
fractional 0–1 programming
Greedy algorithms
Group technology
Human resource management
human resources management
Integer programming
Linear programming
machine-part cell formation problem
Manufacturing
Mathematical programming
Mixed integer
mixed-integer linear programming
Model testing
Optimization
title The Machine-Part Cell Formation Problem with Non-Binary Values: A MILP Model and a Case of Study in the Accounting Profession
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Machine-Part%20Cell%20Formation%20Problem%20with%20Non-Binary%20Values:%20A%20MILP%20Model%20and%20a%20Case%20of%20Study%20in%20the%20Accounting%20Profession&rft.jtitle=Mathematics%20(Basel)&rft.au=del%20Pozo-Ant%C3%BAnez,%20Jose%20Joaquin&rft.date=2021-08-01&rft.volume=9&rft.issue=15&rft.spage=1768&rft.pages=1768-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9151768&rft_dat=%3Cproquest_doaj_%3E2558846166%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-c960e8f4619c719ace17fb5a7dc7af576f527d27fcdada88785940b3e4f987843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558846166&rft_id=info:pmid/&rfr_iscdi=true