Loading…
Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index
We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are...
Saved in:
Published in: | Photonics 2020-12, Vol.7 (4), p.111 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093 |
container_end_page | |
container_issue | 4 |
container_start_page | 111 |
container_title | Photonics |
container_volume | 7 |
creator | Chen, Haijin Hu, Xuehao He, Meifan Yu, Qianqing Lian, Zhenggang Yang, Zicheng Wang, Heng Qu, Hang |
description | We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication. |
doi_str_mv | 10.3390/photonics7040111 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0ace5310fee4791b1777b98d5b00b9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f0ace5310fee4791b1777b98d5b00b9a</doaj_id><sourcerecordid>2462319904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxRdRsNTePS54Xp18bTZHbbVWCoLoOSSbiW5pNzXZiv73RisizmV-PB5vBl5RnBI4Z0zBxfYlDKHv2iSBAyHkoBhRBryqJaOHf_i4mKS0gjyKsEbwUXE325l1NQ0Ry5vOYqyuTEJXLvoBo8cYNpih9CGWs0zt0IW-DL6cm1Q-oI8mK2-Y7Q7fT4ojb9YJJz97XDzdXD9Ob6vl_XwxvVxWLZNqqFoiCDrHBW2sNzUB4TEzCispFQCNI5IRWjekVczX3DWM89o7wa0xFhQbF4t9rgtmpbex25j4oYPp9LcQ4rM2cejaNWoPpkXBCHhELhWxREppVeOEBbDK5KyzfdY2htcdpkGvwi72-X1NeU0ZUQp4dsHe1caQUkT_e5WA_ipA_y-AfQKonnkX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462319904</pqid></control><display><type>article</type><title>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Chen, Haijin ; Hu, Xuehao ; He, Meifan ; Yu, Qianqing ; Lian, Zhenggang ; Yang, Zicheng ; Wang, Heng ; Qu, Hang</creator><creatorcontrib>Chen, Haijin ; Hu, Xuehao ; He, Meifan ; Yu, Qianqing ; Lian, Zhenggang ; Yang, Zicheng ; Wang, Heng ; Qu, Hang</creatorcontrib><description>We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics7040111</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cores ; Fabrication ; fiber optics sensors ; Gases ; Germanium ; Interference fringes ; interferometer ; Laser beams ; Lasers ; Mach-Zehnder interferometers ; microstructured fibers ; Optics ; Photodiodes ; Polymers ; Refractivity ; Sensors ; Silica ; Silicon dioxide ; Variation</subject><ispartof>Photonics, 2020-12, Vol.7 (4), p.111</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</citedby><cites>FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</cites><orcidid>0000-0002-9053-8124 ; 0000-0003-0239-6144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2462319904/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2462319904?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Chen, Haijin</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>He, Meifan</creatorcontrib><creatorcontrib>Yu, Qianqing</creatorcontrib><creatorcontrib>Lian, Zhenggang</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><title>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</title><title>Photonics</title><description>We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.</description><subject>Cores</subject><subject>Fabrication</subject><subject>fiber optics sensors</subject><subject>Gases</subject><subject>Germanium</subject><subject>Interference fringes</subject><subject>interferometer</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Mach-Zehnder interferometers</subject><subject>microstructured fibers</subject><subject>Optics</subject><subject>Photodiodes</subject><subject>Polymers</subject><subject>Refractivity</subject><subject>Sensors</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Variation</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1LAzEQxRdRsNTePS54Xp18bTZHbbVWCoLoOSSbiW5pNzXZiv73RisizmV-PB5vBl5RnBI4Z0zBxfYlDKHv2iSBAyHkoBhRBryqJaOHf_i4mKS0gjyKsEbwUXE325l1NQ0Ry5vOYqyuTEJXLvoBo8cYNpih9CGWs0zt0IW-DL6cm1Q-oI8mK2-Y7Q7fT4ojb9YJJz97XDzdXD9Ob6vl_XwxvVxWLZNqqFoiCDrHBW2sNzUB4TEzCispFQCNI5IRWjekVczX3DWM89o7wa0xFhQbF4t9rgtmpbex25j4oYPp9LcQ4rM2cejaNWoPpkXBCHhELhWxREppVeOEBbDK5KyzfdY2htcdpkGvwi72-X1NeU0ZUQp4dsHe1caQUkT_e5WA_ipA_y-AfQKonnkX</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Haijin</creator><creator>Hu, Xuehao</creator><creator>He, Meifan</creator><creator>Yu, Qianqing</creator><creator>Lian, Zhenggang</creator><creator>Yang, Zicheng</creator><creator>Wang, Heng</creator><creator>Qu, Hang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9053-8124</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid></search><sort><creationdate>20201201</creationdate><title>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</title><author>Chen, Haijin ; Hu, Xuehao ; He, Meifan ; Yu, Qianqing ; Lian, Zhenggang ; Yang, Zicheng ; Wang, Heng ; Qu, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cores</topic><topic>Fabrication</topic><topic>fiber optics sensors</topic><topic>Gases</topic><topic>Germanium</topic><topic>Interference fringes</topic><topic>interferometer</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Mach-Zehnder interferometers</topic><topic>microstructured fibers</topic><topic>Optics</topic><topic>Photodiodes</topic><topic>Polymers</topic><topic>Refractivity</topic><topic>Sensors</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haijin</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>He, Meifan</creatorcontrib><creatorcontrib>Yu, Qianqing</creatorcontrib><creatorcontrib>Lian, Zhenggang</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haijin</au><au>Hu, Xuehao</au><au>He, Meifan</au><au>Yu, Qianqing</au><au>Lian, Zhenggang</au><au>Yang, Zicheng</au><au>Wang, Heng</au><au>Qu, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</atitle><jtitle>Photonics</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>111</spage><pages>111-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics7040111</doi><orcidid>https://orcid.org/0000-0002-9053-8124</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-6732 |
ispartof | Photonics, 2020-12, Vol.7 (4), p.111 |
issn | 2304-6732 2304-6732 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f0ace5310fee4791b1777b98d5b00b9a |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Cores Fabrication fiber optics sensors Gases Germanium Interference fringes interferometer Laser beams Lasers Mach-Zehnder interferometers microstructured fibers Optics Photodiodes Polymers Refractivity Sensors Silica Silicon dioxide Variation |
title | Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Core%20Fiber-Based%20Interferometer%20for%20Detection%20of%20Gas%20Refractive%20Index&rft.jtitle=Photonics&rft.au=Chen,%20Haijin&rft.date=2020-12-01&rft.volume=7&rft.issue=4&rft.spage=111&rft.pages=111-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics7040111&rft_dat=%3Cproquest_doaj_%3E2462319904%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2462319904&rft_id=info:pmid/&rfr_iscdi=true |