Loading…

Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index

We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are...

Full description

Saved in:
Bibliographic Details
Published in:Photonics 2020-12, Vol.7 (4), p.111
Main Authors: Chen, Haijin, Hu, Xuehao, He, Meifan, Yu, Qianqing, Lian, Zhenggang, Yang, Zicheng, Wang, Heng, Qu, Hang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093
cites cdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093
container_end_page
container_issue 4
container_start_page 111
container_title Photonics
container_volume 7
creator Chen, Haijin
Hu, Xuehao
He, Meifan
Yu, Qianqing
Lian, Zhenggang
Yang, Zicheng
Wang, Heng
Qu, Hang
description We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.
doi_str_mv 10.3390/photonics7040111
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0ace5310fee4791b1777b98d5b00b9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f0ace5310fee4791b1777b98d5b00b9a</doaj_id><sourcerecordid>2462319904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxRdRsNTePS54Xp18bTZHbbVWCoLoOSSbiW5pNzXZiv73RisizmV-PB5vBl5RnBI4Z0zBxfYlDKHv2iSBAyHkoBhRBryqJaOHf_i4mKS0gjyKsEbwUXE325l1NQ0Ry5vOYqyuTEJXLvoBo8cYNpih9CGWs0zt0IW-DL6cm1Q-oI8mK2-Y7Q7fT4ojb9YJJz97XDzdXD9Ob6vl_XwxvVxWLZNqqFoiCDrHBW2sNzUB4TEzCispFQCNI5IRWjekVczX3DWM89o7wa0xFhQbF4t9rgtmpbex25j4oYPp9LcQ4rM2cejaNWoPpkXBCHhELhWxREppVeOEBbDK5KyzfdY2htcdpkGvwi72-X1NeU0ZUQp4dsHe1caQUkT_e5WA_ipA_y-AfQKonnkX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462319904</pqid></control><display><type>article</type><title>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Chen, Haijin ; Hu, Xuehao ; He, Meifan ; Yu, Qianqing ; Lian, Zhenggang ; Yang, Zicheng ; Wang, Heng ; Qu, Hang</creator><creatorcontrib>Chen, Haijin ; Hu, Xuehao ; He, Meifan ; Yu, Qianqing ; Lian, Zhenggang ; Yang, Zicheng ; Wang, Heng ; Qu, Hang</creatorcontrib><description>We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics7040111</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cores ; Fabrication ; fiber optics sensors ; Gases ; Germanium ; Interference fringes ; interferometer ; Laser beams ; Lasers ; Mach-Zehnder interferometers ; microstructured fibers ; Optics ; Photodiodes ; Polymers ; Refractivity ; Sensors ; Silica ; Silicon dioxide ; Variation</subject><ispartof>Photonics, 2020-12, Vol.7 (4), p.111</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</citedby><cites>FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</cites><orcidid>0000-0002-9053-8124 ; 0000-0003-0239-6144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2462319904/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2462319904?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Chen, Haijin</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>He, Meifan</creatorcontrib><creatorcontrib>Yu, Qianqing</creatorcontrib><creatorcontrib>Lian, Zhenggang</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><title>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</title><title>Photonics</title><description>We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.</description><subject>Cores</subject><subject>Fabrication</subject><subject>fiber optics sensors</subject><subject>Gases</subject><subject>Germanium</subject><subject>Interference fringes</subject><subject>interferometer</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Mach-Zehnder interferometers</subject><subject>microstructured fibers</subject><subject>Optics</subject><subject>Photodiodes</subject><subject>Polymers</subject><subject>Refractivity</subject><subject>Sensors</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Variation</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1LAzEQxRdRsNTePS54Xp18bTZHbbVWCoLoOSSbiW5pNzXZiv73RisizmV-PB5vBl5RnBI4Z0zBxfYlDKHv2iSBAyHkoBhRBryqJaOHf_i4mKS0gjyKsEbwUXE325l1NQ0Ry5vOYqyuTEJXLvoBo8cYNpih9CGWs0zt0IW-DL6cm1Q-oI8mK2-Y7Q7fT4ojb9YJJz97XDzdXD9Ob6vl_XwxvVxWLZNqqFoiCDrHBW2sNzUB4TEzCispFQCNI5IRWjekVczX3DWM89o7wa0xFhQbF4t9rgtmpbex25j4oYPp9LcQ4rM2cejaNWoPpkXBCHhELhWxREppVeOEBbDK5KyzfdY2htcdpkGvwi72-X1NeU0ZUQp4dsHe1caQUkT_e5WA_ipA_y-AfQKonnkX</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Haijin</creator><creator>Hu, Xuehao</creator><creator>He, Meifan</creator><creator>Yu, Qianqing</creator><creator>Lian, Zhenggang</creator><creator>Yang, Zicheng</creator><creator>Wang, Heng</creator><creator>Qu, Hang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9053-8124</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid></search><sort><creationdate>20201201</creationdate><title>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</title><author>Chen, Haijin ; Hu, Xuehao ; He, Meifan ; Yu, Qianqing ; Lian, Zhenggang ; Yang, Zicheng ; Wang, Heng ; Qu, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cores</topic><topic>Fabrication</topic><topic>fiber optics sensors</topic><topic>Gases</topic><topic>Germanium</topic><topic>Interference fringes</topic><topic>interferometer</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Mach-Zehnder interferometers</topic><topic>microstructured fibers</topic><topic>Optics</topic><topic>Photodiodes</topic><topic>Polymers</topic><topic>Refractivity</topic><topic>Sensors</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haijin</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>He, Meifan</creatorcontrib><creatorcontrib>Yu, Qianqing</creatorcontrib><creatorcontrib>Lian, Zhenggang</creatorcontrib><creatorcontrib>Yang, Zicheng</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haijin</au><au>Hu, Xuehao</au><au>He, Meifan</au><au>Yu, Qianqing</au><au>Lian, Zhenggang</au><au>Yang, Zicheng</au><au>Wang, Heng</au><au>Qu, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index</atitle><jtitle>Photonics</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>111</spage><pages>111-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics7040111</doi><orcidid>https://orcid.org/0000-0002-9053-8124</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-6732
ispartof Photonics, 2020-12, Vol.7 (4), p.111
issn 2304-6732
2304-6732
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f0ace5310fee4791b1777b98d5b00b9a
source Publicly Available Content Database; EZB Electronic Journals Library
subjects Cores
Fabrication
fiber optics sensors
Gases
Germanium
Interference fringes
interferometer
Laser beams
Lasers
Mach-Zehnder interferometers
microstructured fibers
Optics
Photodiodes
Polymers
Refractivity
Sensors
Silica
Silicon dioxide
Variation
title Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Core%20Fiber-Based%20Interferometer%20for%20Detection%20of%20Gas%20Refractive%20Index&rft.jtitle=Photonics&rft.au=Chen,%20Haijin&rft.date=2020-12-01&rft.volume=7&rft.issue=4&rft.spage=111&rft.pages=111-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics7040111&rft_dat=%3Cproquest_doaj_%3E2462319904%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c151edd4528bfa6105fe528e5b7225008d17312681c93f64d83446fd54baab093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2462319904&rft_id=info:pmid/&rfr_iscdi=true