Loading…
Effects of Combined Inorganic Nitrate and Nitrite Supplementation on Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity in Type 2 Diabetes: A Pilot Randomized Controlled Trial
Nitric oxide (NO) stimulates mitochondrial biogenesis in skeletal muscle. However, NO metabolism is disrupted in individuals with type 2 diabetes mellitus (T2DM) potentially contributing to their decreased cardiorespiratory fitness (i.e., VO2max) and skeletal muscle oxidative capacity. We used a ran...
Saved in:
Published in: | Nutrients 2022-10, Vol.14 (21), p.4479 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-f9012068df3a0b3a7cde2ca81396543fe54392945185b36c10253330619213e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-f9012068df3a0b3a7cde2ca81396543fe54392945185b36c10253330619213e23 |
container_end_page | |
container_issue | 21 |
container_start_page | 4479 |
container_title | Nutrients |
container_volume | 14 |
creator | Turner, Kristen D Kronemberger, Ana Bae, Dam Bock, Joshua M Hughes, William E Ueda, Kenichi Feider, Andrew J Hanada, Satoshi de Sousa, Luis G O Harris, Matthew P Anderson, Ethan J Bodine, Sue C Zimmerman, M Bridget Casey, Darren P Lira, Vitor A |
description | Nitric oxide (NO) stimulates mitochondrial biogenesis in skeletal muscle. However, NO metabolism is disrupted in individuals with type 2 diabetes mellitus (T2DM) potentially contributing to their decreased cardiorespiratory fitness (i.e., VO2max) and skeletal muscle oxidative capacity. We used a randomized, double-blind, placebo-controlled, 8-week trial with beetroot juice containing nitrate (NO3−) and nitrite (NO2−) (250 mg and 20 mg/day) to test potential benefits on VO2max and skeletal muscle oxidative capacity in T2DM. T2DM (N = 36, Age = 59 ± 9 years; BMI = 31.9 ± 5.0 kg/m2) and age- and BMI-matched non-diabetic controls (N = 15, Age = 60 ± 9 years; BMI = 29.5 ± 4.6 kg/m2) were studied. Mitochondrial respiratory capacity was assessed in muscle biopsies from a subgroup of T2DM and controls (N = 19 and N = 10, respectively). At baseline, T2DM had higher plasma NO3− (100%; p < 0.001) and lower plasma NO2− levels (−46.8%; p < 0.0001) than controls. VO2max was lower in T2DM (−26.4%; p < 0.001), as was maximal carbohydrate- and fatty acid-supported oxygen consumption in permeabilized muscle fibers (−26.1% and −25.5%, respectively; p < 0.05). NO3−/NO2− supplementation increased VO2max (5.3%; p < 0.01). Further, circulating NO2−, but not NO3−, positively correlated with VO2max after supplementation (R2= 0.40; p < 0.05). Within the NO3−/NO2− group, 42% of subjects presented improvements in both carbohydrate- and fatty acid-supported oxygen consumption in skeletal muscle (vs. 0% in placebo; p < 0.05). VO2max improvements in these individuals tended to be larger than in the rest of the NO3−/NO2− group (1.21 ± 0.51 mL/(kg*min) vs. 0.31 ± 0.10 mL/(kg*min); p = 0.09). NO3−/NO2− supplementation increases VO2max in T2DM individuals and improvements in skeletal muscle oxidative capacity appear to occur in those with more pronounced increases in VO2max. |
doi_str_mv | 10.3390/nu14214479 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0c4a9ef66794e1fb98cdb528fdffe87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746324898</galeid><doaj_id>oai_doaj_org_article_f0c4a9ef66794e1fb98cdb528fdffe87</doaj_id><sourcerecordid>A746324898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-f9012068df3a0b3a7cde2ca81396543fe54392945185b36c10253330619213e23</originalsourceid><addsrcrecordid>eNptUtFuFCEUnRiNbWpf_ABD4pvJVgZYZvDBZLO2ukm1xq7PhGEuK-sMTIFpXP_Nf5PdrW03EQicXM45uffmFsXLEp9RKvBbN5aMlIxV4klxTHBFJpwz-vQRPipOY1zj7apwxenz4ohyylnFyHHx59wY0Ckib9Dc94110KKF82GlnNXoi01BJUDKtTtsM74eh6GDHlxSyXqH8pmr0FofIA42033YoAubHMS4E17_hA6S6tDnMeoO0NUv22bpLWTdoLRNG2QdWm4GQAR9sKqBBPEdmqGvtvMJfcsevre_c2Jz71LwXZfhMljVvSieGdVFOL17T4rvF-fL-afJ5dXHxXx2OdFTKtLECFwSzOvWUIUbqirdAtGqLqngU0YN5EsQwaZlPW0o1yUmU0op5qUgJQVCT4rF3rf1ai2HYHsVNtIrK3eB3C2pQrK5OGmwZkqA4bwSDErTiFq3zZTUps2drqvs9X7vNYxND63OfQyqOzA9_HH2h1z5W7nNtcYsG7y-Mwj-ZoSY5NqPweX6Jako4yJzqgfWSuWsrDM-m-neRi1nFeOUsFrUmXX2H1beLfRWewfG5viB4M1eoIOPMYC5T7zEcjuQ8mEgM_nV41Lvqf_Gj_4FQPfcmg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734690437</pqid></control><display><type>article</type><title>Effects of Combined Inorganic Nitrate and Nitrite Supplementation on Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity in Type 2 Diabetes: A Pilot Randomized Controlled Trial</title><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Turner, Kristen D ; Kronemberger, Ana ; Bae, Dam ; Bock, Joshua M ; Hughes, William E ; Ueda, Kenichi ; Feider, Andrew J ; Hanada, Satoshi ; de Sousa, Luis G O ; Harris, Matthew P ; Anderson, Ethan J ; Bodine, Sue C ; Zimmerman, M Bridget ; Casey, Darren P ; Lira, Vitor A</creator><creatorcontrib>Turner, Kristen D ; Kronemberger, Ana ; Bae, Dam ; Bock, Joshua M ; Hughes, William E ; Ueda, Kenichi ; Feider, Andrew J ; Hanada, Satoshi ; de Sousa, Luis G O ; Harris, Matthew P ; Anderson, Ethan J ; Bodine, Sue C ; Zimmerman, M Bridget ; Casey, Darren P ; Lira, Vitor A</creatorcontrib><description><![CDATA[Nitric oxide (NO) stimulates mitochondrial biogenesis in skeletal muscle. However, NO metabolism is disrupted in individuals with type 2 diabetes mellitus (T2DM) potentially contributing to their decreased cardiorespiratory fitness (i.e., VO2max) and skeletal muscle oxidative capacity. We used a randomized, double-blind, placebo-controlled, 8-week trial with beetroot juice containing nitrate (NO3−) and nitrite (NO2−) (250 mg and 20 mg/day) to test potential benefits on VO2max and skeletal muscle oxidative capacity in T2DM. T2DM (N = 36, Age = 59 ± 9 years; BMI = 31.9 ± 5.0 kg/m2) and age- and BMI-matched non-diabetic controls (N = 15, Age = 60 ± 9 years; BMI = 29.5 ± 4.6 kg/m2) were studied. Mitochondrial respiratory capacity was assessed in muscle biopsies from a subgroup of T2DM and controls (N = 19 and N = 10, respectively). At baseline, T2DM had higher plasma NO3− (100%; p < 0.001) and lower plasma NO2− levels (−46.8%; p < 0.0001) than controls. VO2max was lower in T2DM (−26.4%; p < 0.001), as was maximal carbohydrate- and fatty acid-supported oxygen consumption in permeabilized muscle fibers (−26.1% and −25.5%, respectively; p < 0.05). NO3−/NO2− supplementation increased VO2max (5.3%; p < 0.01). Further, circulating NO2−, but not NO3−, positively correlated with VO2max after supplementation (R2= 0.40; p < 0.05). Within the NO3−/NO2− group, 42% of subjects presented improvements in both carbohydrate- and fatty acid-supported oxygen consumption in skeletal muscle (vs. 0% in placebo; p < 0.05). VO2max improvements in these individuals tended to be larger than in the rest of the NO3−/NO2− group (1.21 ± 0.51 mL/(kg*min) vs. 0.31 ± 0.10 mL/(kg*min); p = 0.09). NO3−/NO2− supplementation increases VO2max in T2DM individuals and improvements in skeletal muscle oxidative capacity appear to occur in those with more pronounced increases in VO2max.]]></description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu14214479</identifier><identifier>PMID: 36364742</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Age ; Aged ; Analysis ; Beta vulgaris ; Bioavailability ; Biopsy ; Blood pressure ; Carbohydrates ; Carbohydrates - pharmacology ; Cardiorespiratory Fitness ; Cardiovascular disease ; Clinical trials ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes therapy ; Dietary Supplements ; Double-Blind Method ; Ethical aspects ; Exercise ; Fatty Acids - metabolism ; Heart rate ; Humans ; Intervention ; Metabolism ; Microscopy ; Middle Aged ; Mitochondria ; Mortality ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Nitrates ; Nitric oxide ; Nitric Oxide - metabolism ; Nitrites ; Nitrogen dioxide ; Nitrogen Dioxide - metabolism ; Nitrogen Dioxide - pharmacology ; Nitrogen Oxides - metabolism ; nutraceutical ; Oxidative Stress ; Oxygen consumption ; Physical fitness ; Pilot Projects ; Placebos ; Prognosis ; Skeletal muscle ; Subgroups ; Type 2 diabetes</subject><ispartof>Nutrients, 2022-10, Vol.14 (21), p.4479</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-f9012068df3a0b3a7cde2ca81396543fe54392945185b36c10253330619213e23</citedby><cites>FETCH-LOGICAL-c539t-f9012068df3a0b3a7cde2ca81396543fe54392945185b36c10253330619213e23</cites><orcidid>0000-0002-8078-3847 ; 0000-0002-6205-3146 ; 0000-0002-4559-4581 ; 0000-0003-1013-2595 ; 0000-0003-4418-5281 ; 0000-0002-0113-8875 ; 0000-0002-3162-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734690437/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734690437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36364742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, Kristen D</creatorcontrib><creatorcontrib>Kronemberger, Ana</creatorcontrib><creatorcontrib>Bae, Dam</creatorcontrib><creatorcontrib>Bock, Joshua M</creatorcontrib><creatorcontrib>Hughes, William E</creatorcontrib><creatorcontrib>Ueda, Kenichi</creatorcontrib><creatorcontrib>Feider, Andrew J</creatorcontrib><creatorcontrib>Hanada, Satoshi</creatorcontrib><creatorcontrib>de Sousa, Luis G O</creatorcontrib><creatorcontrib>Harris, Matthew P</creatorcontrib><creatorcontrib>Anderson, Ethan J</creatorcontrib><creatorcontrib>Bodine, Sue C</creatorcontrib><creatorcontrib>Zimmerman, M Bridget</creatorcontrib><creatorcontrib>Casey, Darren P</creatorcontrib><creatorcontrib>Lira, Vitor A</creatorcontrib><title>Effects of Combined Inorganic Nitrate and Nitrite Supplementation on Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity in Type 2 Diabetes: A Pilot Randomized Controlled Trial</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description><![CDATA[Nitric oxide (NO) stimulates mitochondrial biogenesis in skeletal muscle. However, NO metabolism is disrupted in individuals with type 2 diabetes mellitus (T2DM) potentially contributing to their decreased cardiorespiratory fitness (i.e., VO2max) and skeletal muscle oxidative capacity. We used a randomized, double-blind, placebo-controlled, 8-week trial with beetroot juice containing nitrate (NO3−) and nitrite (NO2−) (250 mg and 20 mg/day) to test potential benefits on VO2max and skeletal muscle oxidative capacity in T2DM. T2DM (N = 36, Age = 59 ± 9 years; BMI = 31.9 ± 5.0 kg/m2) and age- and BMI-matched non-diabetic controls (N = 15, Age = 60 ± 9 years; BMI = 29.5 ± 4.6 kg/m2) were studied. Mitochondrial respiratory capacity was assessed in muscle biopsies from a subgroup of T2DM and controls (N = 19 and N = 10, respectively). At baseline, T2DM had higher plasma NO3− (100%; p < 0.001) and lower plasma NO2− levels (−46.8%; p < 0.0001) than controls. VO2max was lower in T2DM (−26.4%; p < 0.001), as was maximal carbohydrate- and fatty acid-supported oxygen consumption in permeabilized muscle fibers (−26.1% and −25.5%, respectively; p < 0.05). NO3−/NO2− supplementation increased VO2max (5.3%; p < 0.01). Further, circulating NO2−, but not NO3−, positively correlated with VO2max after supplementation (R2= 0.40; p < 0.05). Within the NO3−/NO2− group, 42% of subjects presented improvements in both carbohydrate- and fatty acid-supported oxygen consumption in skeletal muscle (vs. 0% in placebo; p < 0.05). VO2max improvements in these individuals tended to be larger than in the rest of the NO3−/NO2− group (1.21 ± 0.51 mL/(kg*min) vs. 0.31 ± 0.10 mL/(kg*min); p = 0.09). NO3−/NO2− supplementation increases VO2max in T2DM individuals and improvements in skeletal muscle oxidative capacity appear to occur in those with more pronounced increases in VO2max.]]></description><subject>Age</subject><subject>Aged</subject><subject>Analysis</subject><subject>Beta vulgaris</subject><subject>Bioavailability</subject><subject>Biopsy</subject><subject>Blood pressure</subject><subject>Carbohydrates</subject><subject>Carbohydrates - pharmacology</subject><subject>Cardiorespiratory Fitness</subject><subject>Cardiovascular disease</subject><subject>Clinical trials</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes therapy</subject><subject>Dietary Supplements</subject><subject>Double-Blind Method</subject><subject>Ethical aspects</subject><subject>Exercise</subject><subject>Fatty Acids - metabolism</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Intervention</subject><subject>Metabolism</subject><subject>Microscopy</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Mortality</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Nitrates</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitrites</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen Dioxide - metabolism</subject><subject>Nitrogen Dioxide - pharmacology</subject><subject>Nitrogen Oxides - metabolism</subject><subject>nutraceutical</subject><subject>Oxidative Stress</subject><subject>Oxygen consumption</subject><subject>Physical fitness</subject><subject>Pilot Projects</subject><subject>Placebos</subject><subject>Prognosis</subject><subject>Skeletal muscle</subject><subject>Subgroups</subject><subject>Type 2 diabetes</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUtFuFCEUnRiNbWpf_ABD4pvJVgZYZvDBZLO2ukm1xq7PhGEuK-sMTIFpXP_Nf5PdrW03EQicXM45uffmFsXLEp9RKvBbN5aMlIxV4klxTHBFJpwz-vQRPipOY1zj7apwxenz4ohyylnFyHHx59wY0Ckib9Dc94110KKF82GlnNXoi01BJUDKtTtsM74eh6GDHlxSyXqH8pmr0FofIA42033YoAubHMS4E17_hA6S6tDnMeoO0NUv22bpLWTdoLRNG2QdWm4GQAR9sKqBBPEdmqGvtvMJfcsevre_c2Jz71LwXZfhMljVvSieGdVFOL17T4rvF-fL-afJ5dXHxXx2OdFTKtLECFwSzOvWUIUbqirdAtGqLqngU0YN5EsQwaZlPW0o1yUmU0op5qUgJQVCT4rF3rf1ai2HYHsVNtIrK3eB3C2pQrK5OGmwZkqA4bwSDErTiFq3zZTUps2drqvs9X7vNYxND63OfQyqOzA9_HH2h1z5W7nNtcYsG7y-Mwj-ZoSY5NqPweX6Jako4yJzqgfWSuWsrDM-m-neRi1nFeOUsFrUmXX2H1beLfRWewfG5viB4M1eoIOPMYC5T7zEcjuQ8mEgM_nV41Lvqf_Gj_4FQPfcmg</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Turner, Kristen D</creator><creator>Kronemberger, Ana</creator><creator>Bae, Dam</creator><creator>Bock, Joshua M</creator><creator>Hughes, William E</creator><creator>Ueda, Kenichi</creator><creator>Feider, Andrew J</creator><creator>Hanada, Satoshi</creator><creator>de Sousa, Luis G O</creator><creator>Harris, Matthew P</creator><creator>Anderson, Ethan J</creator><creator>Bodine, Sue C</creator><creator>Zimmerman, M Bridget</creator><creator>Casey, Darren P</creator><creator>Lira, Vitor A</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8078-3847</orcidid><orcidid>https://orcid.org/0000-0002-6205-3146</orcidid><orcidid>https://orcid.org/0000-0002-4559-4581</orcidid><orcidid>https://orcid.org/0000-0003-1013-2595</orcidid><orcidid>https://orcid.org/0000-0003-4418-5281</orcidid><orcidid>https://orcid.org/0000-0002-0113-8875</orcidid><orcidid>https://orcid.org/0000-0002-3162-3804</orcidid></search><sort><creationdate>20221025</creationdate><title>Effects of Combined Inorganic Nitrate and Nitrite Supplementation on Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity in Type 2 Diabetes: A Pilot Randomized Controlled Trial</title><author>Turner, Kristen D ; Kronemberger, Ana ; Bae, Dam ; Bock, Joshua M ; Hughes, William E ; Ueda, Kenichi ; Feider, Andrew J ; Hanada, Satoshi ; de Sousa, Luis G O ; Harris, Matthew P ; Anderson, Ethan J ; Bodine, Sue C ; Zimmerman, M Bridget ; Casey, Darren P ; Lira, Vitor A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-f9012068df3a0b3a7cde2ca81396543fe54392945185b36c10253330619213e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Aged</topic><topic>Analysis</topic><topic>Beta vulgaris</topic><topic>Bioavailability</topic><topic>Biopsy</topic><topic>Blood pressure</topic><topic>Carbohydrates</topic><topic>Carbohydrates - pharmacology</topic><topic>Cardiorespiratory Fitness</topic><topic>Cardiovascular disease</topic><topic>Clinical trials</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes therapy</topic><topic>Dietary Supplements</topic><topic>Double-Blind Method</topic><topic>Ethical aspects</topic><topic>Exercise</topic><topic>Fatty Acids - metabolism</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Intervention</topic><topic>Metabolism</topic><topic>Microscopy</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Mortality</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Nitrates</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitrites</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen Dioxide - metabolism</topic><topic>Nitrogen Dioxide - pharmacology</topic><topic>Nitrogen Oxides - metabolism</topic><topic>nutraceutical</topic><topic>Oxidative Stress</topic><topic>Oxygen consumption</topic><topic>Physical fitness</topic><topic>Pilot Projects</topic><topic>Placebos</topic><topic>Prognosis</topic><topic>Skeletal muscle</topic><topic>Subgroups</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, Kristen D</creatorcontrib><creatorcontrib>Kronemberger, Ana</creatorcontrib><creatorcontrib>Bae, Dam</creatorcontrib><creatorcontrib>Bock, Joshua M</creatorcontrib><creatorcontrib>Hughes, William E</creatorcontrib><creatorcontrib>Ueda, Kenichi</creatorcontrib><creatorcontrib>Feider, Andrew J</creatorcontrib><creatorcontrib>Hanada, Satoshi</creatorcontrib><creatorcontrib>de Sousa, Luis G O</creatorcontrib><creatorcontrib>Harris, Matthew P</creatorcontrib><creatorcontrib>Anderson, Ethan J</creatorcontrib><creatorcontrib>Bodine, Sue C</creatorcontrib><creatorcontrib>Zimmerman, M Bridget</creatorcontrib><creatorcontrib>Casey, Darren P</creatorcontrib><creatorcontrib>Lira, Vitor A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health & Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, Kristen D</au><au>Kronemberger, Ana</au><au>Bae, Dam</au><au>Bock, Joshua M</au><au>Hughes, William E</au><au>Ueda, Kenichi</au><au>Feider, Andrew J</au><au>Hanada, Satoshi</au><au>de Sousa, Luis G O</au><au>Harris, Matthew P</au><au>Anderson, Ethan J</au><au>Bodine, Sue C</au><au>Zimmerman, M Bridget</au><au>Casey, Darren P</au><au>Lira, Vitor A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Combined Inorganic Nitrate and Nitrite Supplementation on Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity in Type 2 Diabetes: A Pilot Randomized Controlled Trial</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2022-10-25</date><risdate>2022</risdate><volume>14</volume><issue>21</issue><spage>4479</spage><pages>4479-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract><![CDATA[Nitric oxide (NO) stimulates mitochondrial biogenesis in skeletal muscle. However, NO metabolism is disrupted in individuals with type 2 diabetes mellitus (T2DM) potentially contributing to their decreased cardiorespiratory fitness (i.e., VO2max) and skeletal muscle oxidative capacity. We used a randomized, double-blind, placebo-controlled, 8-week trial with beetroot juice containing nitrate (NO3−) and nitrite (NO2−) (250 mg and 20 mg/day) to test potential benefits on VO2max and skeletal muscle oxidative capacity in T2DM. T2DM (N = 36, Age = 59 ± 9 years; BMI = 31.9 ± 5.0 kg/m2) and age- and BMI-matched non-diabetic controls (N = 15, Age = 60 ± 9 years; BMI = 29.5 ± 4.6 kg/m2) were studied. Mitochondrial respiratory capacity was assessed in muscle biopsies from a subgroup of T2DM and controls (N = 19 and N = 10, respectively). At baseline, T2DM had higher plasma NO3− (100%; p < 0.001) and lower plasma NO2− levels (−46.8%; p < 0.0001) than controls. VO2max was lower in T2DM (−26.4%; p < 0.001), as was maximal carbohydrate- and fatty acid-supported oxygen consumption in permeabilized muscle fibers (−26.1% and −25.5%, respectively; p < 0.05). NO3−/NO2− supplementation increased VO2max (5.3%; p < 0.01). Further, circulating NO2−, but not NO3−, positively correlated with VO2max after supplementation (R2= 0.40; p < 0.05). Within the NO3−/NO2− group, 42% of subjects presented improvements in both carbohydrate- and fatty acid-supported oxygen consumption in skeletal muscle (vs. 0% in placebo; p < 0.05). VO2max improvements in these individuals tended to be larger than in the rest of the NO3−/NO2− group (1.21 ± 0.51 mL/(kg*min) vs. 0.31 ± 0.10 mL/(kg*min); p = 0.09). NO3−/NO2− supplementation increases VO2max in T2DM individuals and improvements in skeletal muscle oxidative capacity appear to occur in those with more pronounced increases in VO2max.]]></abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36364742</pmid><doi>10.3390/nu14214479</doi><orcidid>https://orcid.org/0000-0002-8078-3847</orcidid><orcidid>https://orcid.org/0000-0002-6205-3146</orcidid><orcidid>https://orcid.org/0000-0002-4559-4581</orcidid><orcidid>https://orcid.org/0000-0003-1013-2595</orcidid><orcidid>https://orcid.org/0000-0003-4418-5281</orcidid><orcidid>https://orcid.org/0000-0002-0113-8875</orcidid><orcidid>https://orcid.org/0000-0002-3162-3804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6643 |
ispartof | Nutrients, 2022-10, Vol.14 (21), p.4479 |
issn | 2072-6643 2072-6643 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f0c4a9ef66794e1fb98cdb528fdffe87 |
source | PubMed Central (Open Access); ProQuest - Publicly Available Content Database |
subjects | Age Aged Analysis Beta vulgaris Bioavailability Biopsy Blood pressure Carbohydrates Carbohydrates - pharmacology Cardiorespiratory Fitness Cardiovascular disease Clinical trials Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Diabetes therapy Dietary Supplements Double-Blind Method Ethical aspects Exercise Fatty Acids - metabolism Heart rate Humans Intervention Metabolism Microscopy Middle Aged Mitochondria Mortality Muscle, Skeletal - metabolism Muscles Musculoskeletal system Nitrates Nitric oxide Nitric Oxide - metabolism Nitrites Nitrogen dioxide Nitrogen Dioxide - metabolism Nitrogen Dioxide - pharmacology Nitrogen Oxides - metabolism nutraceutical Oxidative Stress Oxygen consumption Physical fitness Pilot Projects Placebos Prognosis Skeletal muscle Subgroups Type 2 diabetes |
title | Effects of Combined Inorganic Nitrate and Nitrite Supplementation on Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity in Type 2 Diabetes: A Pilot Randomized Controlled Trial |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Combined%20Inorganic%20Nitrate%20and%20Nitrite%20Supplementation%20on%20Cardiorespiratory%20Fitness%20and%20Skeletal%20Muscle%20Oxidative%20Capacity%20in%20Type%202%20Diabetes:%20A%20Pilot%20Randomized%20Controlled%20Trial&rft.jtitle=Nutrients&rft.au=Turner,%20Kristen%20D&rft.date=2022-10-25&rft.volume=14&rft.issue=21&rft.spage=4479&rft.pages=4479-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu14214479&rft_dat=%3Cgale_doaj_%3EA746324898%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-f9012068df3a0b3a7cde2ca81396543fe54392945185b36c10253330619213e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734690437&rft_id=info:pmid/36364742&rft_galeid=A746324898&rfr_iscdi=true |