Loading…

OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines

OH airglow is an important nocturnal emission of the Earth's mesopause region. As it is chemiluminescent radiation in a thin medium, the population distribution over the various roto-vibrational OH energy levels of the electronic ground state is not in local thermodynamic equilibrium (LTE). In...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2020-05, Vol.20 (9), p.5269-5292
Main Authors: Noll, Stefan, Winkler, Holger, Goussev, Oleg, Proxauf, Bastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813
cites cdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813
container_end_page 5292
container_issue 9
container_start_page 5269
container_title Atmospheric chemistry and physics
container_volume 20
creator Noll, Stefan
Winkler, Holger
Goussev, Oleg
Proxauf, Bastian
description OH airglow is an important nocturnal emission of the Earth's mesopause region. As it is chemiluminescent radiation in a thin medium, the population distribution over the various roto-vibrational OH energy levels of the electronic ground state is not in local thermodynamic equilibrium (LTE). In order to better understand these non-LTE effects, we studied hundreds of OH lines in a high-quality mean spectrum based on observations with the high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet components when resolved. As the reliability of these results critically depends on the Einstein-A coefficients used, we tested six different sets and found clear systematic errors in all of them, especially for Q-branch lines and individual Λ-doublet components. In order to minimise the deviations in the populations for the same upper level, we used the most promising coefficients from Brooke et al. (2016) and further improved them with an empirical correction approach. The resulting rotational level populations show a clear bimodality for each v, which is characterised by a probably fully thermalised cold component and a hot population where the rotational temperature increases between v=9 and 4 from about 700 to about 7000 K, and the corresponding contribution to the total population at the lowest N decreases by an order of magnitude. The presence of the hot populations causes non-LTE contributions to rotational temperatures at low N, which can be estimated quite robustly based on the two-temperature model. The bimodality is also clearly indicated by the dependence of the populations on changes in the effective emission height of the OH emission layer. The degree of thermalisation decreases with increasing layer height due to a higher fraction of the hot component. Our high-quality population data are promising with respect to a better understanding of the OH thermalisation process.
doi_str_mv 10.5194/acp-20-5269-2020
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0c64690ab73442cab33dfc136aeeeac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622866666</galeid><doaj_id>oai_doaj_org_article_f0c64690ab73442cab33dfc136aeeeac</doaj_id><sourcerecordid>A622866666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</originalsourceid><addsrcrecordid>eNptkk2LFDEQhhtRcF29ewx48tBrvjrpPg7L6g4sLPhxNdSkK2OG7qRN0rL-ezM7og6YHKpSeeqlEt6mec3oVccG-Q7s0nLadlwNNXL6pLlgqqetFlw-_Sd_3rzI-UAp7yiTF83X-1sy4Q-cyBKXdYLiY8gEwkjA2jWB9ZhJdOTGh1zQh3ZDbETnfL0IJROX4ky-rWFMOD6CM0Je64FMPmB-2TxzMGV89TteNl_e33y-vm3v7j9srzd3re2oLK0UoDrJWEdth0Iq0MOgd1xy5ugoZa-hlwOFTu_oSMEOWgiOkjqruZaqZ-Ky2Z50xwgHsyQ_Q_ppInjzWIhpbyAVbyc0jlolVVXbaSElt7ATYnSWCQWICLZqvTlpLSl-XzEXc4hrCnV8wyWTSrNB87_UHqqoDy6W-luzz9ZsFOe9Oq5KXf2HqnvE2dsY0PlaP2t4e9ZQmYIPZQ9rzmb76eM5S0-sTTHnhO7Pwxk1R1OYagrDa15NYY6mEL8AMmSm9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414671972</pqid></control><display><type>article</type><title>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Noll, Stefan ; Winkler, Holger ; Goussev, Oleg ; Proxauf, Bastian</creator><creatorcontrib>Noll, Stefan ; Winkler, Holger ; Goussev, Oleg ; Proxauf, Bastian</creatorcontrib><description>OH airglow is an important nocturnal emission of the Earth's mesopause region. As it is chemiluminescent radiation in a thin medium, the population distribution over the various roto-vibrational OH energy levels of the electronic ground state is not in local thermodynamic equilibrium (LTE). In order to better understand these non-LTE effects, we studied hundreds of OH lines in a high-quality mean spectrum based on observations with the high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet components when resolved. As the reliability of these results critically depends on the Einstein-A coefficients used, we tested six different sets and found clear systematic errors in all of them, especially for Q-branch lines and individual Λ-doublet components. In order to minimise the deviations in the populations for the same upper level, we used the most promising coefficients from Brooke et al. (2016) and further improved them with an empirical correction approach. The resulting rotational level populations show a clear bimodality for each v, which is characterised by a probably fully thermalised cold component and a hot population where the rotational temperature increases between v=9 and 4 from about 700 to about 7000 K, and the corresponding contribution to the total population at the lowest N decreases by an order of magnitude. The presence of the hot populations causes non-LTE contributions to rotational temperatures at low N, which can be estimated quite robustly based on the two-temperature model. The bimodality is also clearly indicated by the dependence of the populations on changes in the effective emission height of the OH emission layer. The degree of thermalisation decreases with increasing layer height due to a higher fraction of the hot component. Our high-quality population data are promising with respect to a better understanding of the OH thermalisation process.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-5269-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Airglow ; Chemiluminescence ; Coefficients ; Component reliability ; Components ; Datasets ; Emission ; Emissions ; Energy levels ; Height ; Local thermodynamic equilibrium ; Mesopause ; Population ; Population distribution ; Potassium ; Quality ; Radiation ; Radiation (Physics) ; Studies ; Systematic errors ; Temperature ; Temperature rise ; Thermodynamic equilibrium ; Thermodynamics ; Visual observation</subject><ispartof>Atmospheric chemistry and physics, 2020-05, Vol.20 (9), p.5269-5292</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</citedby><cites>FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</cites><orcidid>0000-0003-1957-4170 ; 0000-0001-8162-7996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414671972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414671972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Noll, Stefan</creatorcontrib><creatorcontrib>Winkler, Holger</creatorcontrib><creatorcontrib>Goussev, Oleg</creatorcontrib><creatorcontrib>Proxauf, Bastian</creatorcontrib><title>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</title><title>Atmospheric chemistry and physics</title><description>OH airglow is an important nocturnal emission of the Earth's mesopause region. As it is chemiluminescent radiation in a thin medium, the population distribution over the various roto-vibrational OH energy levels of the electronic ground state is not in local thermodynamic equilibrium (LTE). In order to better understand these non-LTE effects, we studied hundreds of OH lines in a high-quality mean spectrum based on observations with the high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet components when resolved. As the reliability of these results critically depends on the Einstein-A coefficients used, we tested six different sets and found clear systematic errors in all of them, especially for Q-branch lines and individual Λ-doublet components. In order to minimise the deviations in the populations for the same upper level, we used the most promising coefficients from Brooke et al. (2016) and further improved them with an empirical correction approach. The resulting rotational level populations show a clear bimodality for each v, which is characterised by a probably fully thermalised cold component and a hot population where the rotational temperature increases between v=9 and 4 from about 700 to about 7000 K, and the corresponding contribution to the total population at the lowest N decreases by an order of magnitude. The presence of the hot populations causes non-LTE contributions to rotational temperatures at low N, which can be estimated quite robustly based on the two-temperature model. The bimodality is also clearly indicated by the dependence of the populations on changes in the effective emission height of the OH emission layer. The degree of thermalisation decreases with increasing layer height due to a higher fraction of the hot component. Our high-quality population data are promising with respect to a better understanding of the OH thermalisation process.</description><subject>Airglow</subject><subject>Chemiluminescence</subject><subject>Coefficients</subject><subject>Component reliability</subject><subject>Components</subject><subject>Datasets</subject><subject>Emission</subject><subject>Emissions</subject><subject>Energy levels</subject><subject>Height</subject><subject>Local thermodynamic equilibrium</subject><subject>Mesopause</subject><subject>Population</subject><subject>Population distribution</subject><subject>Potassium</subject><subject>Quality</subject><subject>Radiation</subject><subject>Radiation (Physics)</subject><subject>Studies</subject><subject>Systematic errors</subject><subject>Temperature</subject><subject>Temperature rise</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>Visual observation</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2LFDEQhhtRcF29ewx48tBrvjrpPg7L6g4sLPhxNdSkK2OG7qRN0rL-ezM7og6YHKpSeeqlEt6mec3oVccG-Q7s0nLadlwNNXL6pLlgqqetFlw-_Sd_3rzI-UAp7yiTF83X-1sy4Q-cyBKXdYLiY8gEwkjA2jWB9ZhJdOTGh1zQh3ZDbETnfL0IJROX4ky-rWFMOD6CM0Je64FMPmB-2TxzMGV89TteNl_e33y-vm3v7j9srzd3re2oLK0UoDrJWEdth0Iq0MOgd1xy5ugoZa-hlwOFTu_oSMEOWgiOkjqruZaqZ-Ky2Z50xwgHsyQ_Q_ppInjzWIhpbyAVbyc0jlolVVXbaSElt7ATYnSWCQWICLZqvTlpLSl-XzEXc4hrCnV8wyWTSrNB87_UHqqoDy6W-luzz9ZsFOe9Oq5KXf2HqnvE2dsY0PlaP2t4e9ZQmYIPZQ9rzmb76eM5S0-sTTHnhO7Pwxk1R1OYagrDa15NYY6mEL8AMmSm9Q</recordid><startdate>20200506</startdate><enddate>20200506</enddate><creator>Noll, Stefan</creator><creator>Winkler, Holger</creator><creator>Goussev, Oleg</creator><creator>Proxauf, Bastian</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1957-4170</orcidid><orcidid>https://orcid.org/0000-0001-8162-7996</orcidid></search><sort><creationdate>20200506</creationdate><title>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</title><author>Noll, Stefan ; Winkler, Holger ; Goussev, Oleg ; Proxauf, Bastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airglow</topic><topic>Chemiluminescence</topic><topic>Coefficients</topic><topic>Component reliability</topic><topic>Components</topic><topic>Datasets</topic><topic>Emission</topic><topic>Emissions</topic><topic>Energy levels</topic><topic>Height</topic><topic>Local thermodynamic equilibrium</topic><topic>Mesopause</topic><topic>Population</topic><topic>Population distribution</topic><topic>Potassium</topic><topic>Quality</topic><topic>Radiation</topic><topic>Radiation (Physics)</topic><topic>Studies</topic><topic>Systematic errors</topic><topic>Temperature</topic><topic>Temperature rise</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noll, Stefan</creatorcontrib><creatorcontrib>Winkler, Holger</creatorcontrib><creatorcontrib>Goussev, Oleg</creatorcontrib><creatorcontrib>Proxauf, Bastian</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noll, Stefan</au><au>Winkler, Holger</au><au>Goussev, Oleg</au><au>Proxauf, Bastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-05-06</date><risdate>2020</risdate><volume>20</volume><issue>9</issue><spage>5269</spage><epage>5292</epage><pages>5269-5292</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>OH airglow is an important nocturnal emission of the Earth's mesopause region. As it is chemiluminescent radiation in a thin medium, the population distribution over the various roto-vibrational OH energy levels of the electronic ground state is not in local thermodynamic equilibrium (LTE). In order to better understand these non-LTE effects, we studied hundreds of OH lines in a high-quality mean spectrum based on observations with the high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet components when resolved. As the reliability of these results critically depends on the Einstein-A coefficients used, we tested six different sets and found clear systematic errors in all of them, especially for Q-branch lines and individual Λ-doublet components. In order to minimise the deviations in the populations for the same upper level, we used the most promising coefficients from Brooke et al. (2016) and further improved them with an empirical correction approach. The resulting rotational level populations show a clear bimodality for each v, which is characterised by a probably fully thermalised cold component and a hot population where the rotational temperature increases between v=9 and 4 from about 700 to about 7000 K, and the corresponding contribution to the total population at the lowest N decreases by an order of magnitude. The presence of the hot populations causes non-LTE contributions to rotational temperatures at low N, which can be estimated quite robustly based on the two-temperature model. The bimodality is also clearly indicated by the dependence of the populations on changes in the effective emission height of the OH emission layer. The degree of thermalisation decreases with increasing layer height due to a higher fraction of the hot component. Our high-quality population data are promising with respect to a better understanding of the OH thermalisation process.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-5269-2020</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1957-4170</orcidid><orcidid>https://orcid.org/0000-0001-8162-7996</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2020-05, Vol.20 (9), p.5269-5292
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f0c64690ab73442cab33dfc136aeeeac
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Airglow
Chemiluminescence
Coefficients
Component reliability
Components
Datasets
Emission
Emissions
Energy levels
Height
Local thermodynamic equilibrium
Mesopause
Population
Population distribution
Potassium
Quality
Radiation
Radiation (Physics)
Studies
Systematic errors
Temperature
Temperature rise
Thermodynamic equilibrium
Thermodynamics
Visual observation
title OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OH%20level%20populations%20and%20accuracies%20of%20Einstein-A%20coefficients%20from%20hundreds%20of%20measured%20lines&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Noll,%20Stefan&rft.date=2020-05-06&rft.volume=20&rft.issue=9&rft.spage=5269&rft.epage=5292&rft.pages=5269-5292&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-5269-2020&rft_dat=%3Cgale_doaj_%3EA622866666%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414671972&rft_id=info:pmid/&rft_galeid=A622866666&rfr_iscdi=true