Loading…
OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines
OH airglow is an important nocturnal emission of the Earth's mesopause region. As it is chemiluminescent radiation in a thin medium, the population distribution over the various roto-vibrational OH energy levels of the electronic ground state is not in local thermodynamic equilibrium (LTE). In...
Saved in:
Published in: | Atmospheric chemistry and physics 2020-05, Vol.20 (9), p.5269-5292 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813 |
container_end_page | 5292 |
container_issue | 9 |
container_start_page | 5269 |
container_title | Atmospheric chemistry and physics |
container_volume | 20 |
creator | Noll, Stefan Winkler, Holger Goussev, Oleg Proxauf, Bastian |
description | OH airglow is an important nocturnal emission of the Earth's mesopause region.
As it is chemiluminescent radiation in a thin medium, the population
distribution over the various roto-vibrational OH energy levels of the
electronic ground state is not in local thermodynamic equilibrium (LTE). In
order to better understand these non-LTE effects, we studied hundreds of OH
lines in a high-quality mean spectrum based on observations with the
high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal
in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet
components when resolved. As the reliability of these results critically
depends on the Einstein-A coefficients used, we tested six different sets and
found clear systematic errors in all of them, especially for Q-branch lines
and individual Λ-doublet components. In order to minimise the
deviations in the populations for the same upper level, we used the most
promising coefficients from Brooke et al. (2016) and further
improved them with an empirical correction approach. The resulting rotational
level populations show a clear bimodality for each v, which is characterised
by a probably fully thermalised cold component and a hot population where the
rotational temperature increases between v=9 and 4 from about 700 to about
7000 K, and the corresponding contribution to the total population at the
lowest N decreases by an order of magnitude. The presence of the hot
populations causes non-LTE contributions to rotational temperatures at low
N, which can be estimated quite robustly based on the two-temperature model.
The bimodality is also clearly indicated by the dependence of the populations
on changes in the effective emission height of the OH emission layer. The
degree of thermalisation decreases with increasing layer height due to a
higher fraction of the hot component. Our high-quality population data are
promising with respect to a better understanding of the OH thermalisation
process. |
doi_str_mv | 10.5194/acp-20-5269-2020 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0c64690ab73442cab33dfc136aeeeac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622866666</galeid><doaj_id>oai_doaj_org_article_f0c64690ab73442cab33dfc136aeeeac</doaj_id><sourcerecordid>A622866666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</originalsourceid><addsrcrecordid>eNptkk2LFDEQhhtRcF29ewx48tBrvjrpPg7L6g4sLPhxNdSkK2OG7qRN0rL-ezM7og6YHKpSeeqlEt6mec3oVccG-Q7s0nLadlwNNXL6pLlgqqetFlw-_Sd_3rzI-UAp7yiTF83X-1sy4Q-cyBKXdYLiY8gEwkjA2jWB9ZhJdOTGh1zQh3ZDbETnfL0IJROX4ky-rWFMOD6CM0Je64FMPmB-2TxzMGV89TteNl_e33y-vm3v7j9srzd3re2oLK0UoDrJWEdth0Iq0MOgd1xy5ugoZa-hlwOFTu_oSMEOWgiOkjqruZaqZ-Ky2Z50xwgHsyQ_Q_ppInjzWIhpbyAVbyc0jlolVVXbaSElt7ATYnSWCQWICLZqvTlpLSl-XzEXc4hrCnV8wyWTSrNB87_UHqqoDy6W-luzz9ZsFOe9Oq5KXf2HqnvE2dsY0PlaP2t4e9ZQmYIPZQ9rzmb76eM5S0-sTTHnhO7Pwxk1R1OYagrDa15NYY6mEL8AMmSm9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414671972</pqid></control><display><type>article</type><title>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Noll, Stefan ; Winkler, Holger ; Goussev, Oleg ; Proxauf, Bastian</creator><creatorcontrib>Noll, Stefan ; Winkler, Holger ; Goussev, Oleg ; Proxauf, Bastian</creatorcontrib><description>OH airglow is an important nocturnal emission of the Earth's mesopause region.
As it is chemiluminescent radiation in a thin medium, the population
distribution over the various roto-vibrational OH energy levels of the
electronic ground state is not in local thermodynamic equilibrium (LTE). In
order to better understand these non-LTE effects, we studied hundreds of OH
lines in a high-quality mean spectrum based on observations with the
high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal
in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet
components when resolved. As the reliability of these results critically
depends on the Einstein-A coefficients used, we tested six different sets and
found clear systematic errors in all of them, especially for Q-branch lines
and individual Λ-doublet components. In order to minimise the
deviations in the populations for the same upper level, we used the most
promising coefficients from Brooke et al. (2016) and further
improved them with an empirical correction approach. The resulting rotational
level populations show a clear bimodality for each v, which is characterised
by a probably fully thermalised cold component and a hot population where the
rotational temperature increases between v=9 and 4 from about 700 to about
7000 K, and the corresponding contribution to the total population at the
lowest N decreases by an order of magnitude. The presence of the hot
populations causes non-LTE contributions to rotational temperatures at low
N, which can be estimated quite robustly based on the two-temperature model.
The bimodality is also clearly indicated by the dependence of the populations
on changes in the effective emission height of the OH emission layer. The
degree of thermalisation decreases with increasing layer height due to a
higher fraction of the hot component. Our high-quality population data are
promising with respect to a better understanding of the OH thermalisation
process.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-20-5269-2020</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Airglow ; Chemiluminescence ; Coefficients ; Component reliability ; Components ; Datasets ; Emission ; Emissions ; Energy levels ; Height ; Local thermodynamic equilibrium ; Mesopause ; Population ; Population distribution ; Potassium ; Quality ; Radiation ; Radiation (Physics) ; Studies ; Systematic errors ; Temperature ; Temperature rise ; Thermodynamic equilibrium ; Thermodynamics ; Visual observation</subject><ispartof>Atmospheric chemistry and physics, 2020-05, Vol.20 (9), p.5269-5292</ispartof><rights>COPYRIGHT 2020 Copernicus GmbH</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</citedby><cites>FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</cites><orcidid>0000-0003-1957-4170 ; 0000-0001-8162-7996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414671972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414671972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Noll, Stefan</creatorcontrib><creatorcontrib>Winkler, Holger</creatorcontrib><creatorcontrib>Goussev, Oleg</creatorcontrib><creatorcontrib>Proxauf, Bastian</creatorcontrib><title>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</title><title>Atmospheric chemistry and physics</title><description>OH airglow is an important nocturnal emission of the Earth's mesopause region.
As it is chemiluminescent radiation in a thin medium, the population
distribution over the various roto-vibrational OH energy levels of the
electronic ground state is not in local thermodynamic equilibrium (LTE). In
order to better understand these non-LTE effects, we studied hundreds of OH
lines in a high-quality mean spectrum based on observations with the
high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal
in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet
components when resolved. As the reliability of these results critically
depends on the Einstein-A coefficients used, we tested six different sets and
found clear systematic errors in all of them, especially for Q-branch lines
and individual Λ-doublet components. In order to minimise the
deviations in the populations for the same upper level, we used the most
promising coefficients from Brooke et al. (2016) and further
improved them with an empirical correction approach. The resulting rotational
level populations show a clear bimodality for each v, which is characterised
by a probably fully thermalised cold component and a hot population where the
rotational temperature increases between v=9 and 4 from about 700 to about
7000 K, and the corresponding contribution to the total population at the
lowest N decreases by an order of magnitude. The presence of the hot
populations causes non-LTE contributions to rotational temperatures at low
N, which can be estimated quite robustly based on the two-temperature model.
The bimodality is also clearly indicated by the dependence of the populations
on changes in the effective emission height of the OH emission layer. The
degree of thermalisation decreases with increasing layer height due to a
higher fraction of the hot component. Our high-quality population data are
promising with respect to a better understanding of the OH thermalisation
process.</description><subject>Airglow</subject><subject>Chemiluminescence</subject><subject>Coefficients</subject><subject>Component reliability</subject><subject>Components</subject><subject>Datasets</subject><subject>Emission</subject><subject>Emissions</subject><subject>Energy levels</subject><subject>Height</subject><subject>Local thermodynamic equilibrium</subject><subject>Mesopause</subject><subject>Population</subject><subject>Population distribution</subject><subject>Potassium</subject><subject>Quality</subject><subject>Radiation</subject><subject>Radiation (Physics)</subject><subject>Studies</subject><subject>Systematic errors</subject><subject>Temperature</subject><subject>Temperature rise</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>Visual observation</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2LFDEQhhtRcF29ewx48tBrvjrpPg7L6g4sLPhxNdSkK2OG7qRN0rL-ezM7og6YHKpSeeqlEt6mec3oVccG-Q7s0nLadlwNNXL6pLlgqqetFlw-_Sd_3rzI-UAp7yiTF83X-1sy4Q-cyBKXdYLiY8gEwkjA2jWB9ZhJdOTGh1zQh3ZDbETnfL0IJROX4ky-rWFMOD6CM0Je64FMPmB-2TxzMGV89TteNl_e33y-vm3v7j9srzd3re2oLK0UoDrJWEdth0Iq0MOgd1xy5ugoZa-hlwOFTu_oSMEOWgiOkjqruZaqZ-Ky2Z50xwgHsyQ_Q_ppInjzWIhpbyAVbyc0jlolVVXbaSElt7ATYnSWCQWICLZqvTlpLSl-XzEXc4hrCnV8wyWTSrNB87_UHqqoDy6W-luzz9ZsFOe9Oq5KXf2HqnvE2dsY0PlaP2t4e9ZQmYIPZQ9rzmb76eM5S0-sTTHnhO7Pwxk1R1OYagrDa15NYY6mEL8AMmSm9Q</recordid><startdate>20200506</startdate><enddate>20200506</enddate><creator>Noll, Stefan</creator><creator>Winkler, Holger</creator><creator>Goussev, Oleg</creator><creator>Proxauf, Bastian</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1957-4170</orcidid><orcidid>https://orcid.org/0000-0001-8162-7996</orcidid></search><sort><creationdate>20200506</creationdate><title>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</title><author>Noll, Stefan ; Winkler, Holger ; Goussev, Oleg ; Proxauf, Bastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airglow</topic><topic>Chemiluminescence</topic><topic>Coefficients</topic><topic>Component reliability</topic><topic>Components</topic><topic>Datasets</topic><topic>Emission</topic><topic>Emissions</topic><topic>Energy levels</topic><topic>Height</topic><topic>Local thermodynamic equilibrium</topic><topic>Mesopause</topic><topic>Population</topic><topic>Population distribution</topic><topic>Potassium</topic><topic>Quality</topic><topic>Radiation</topic><topic>Radiation (Physics)</topic><topic>Studies</topic><topic>Systematic errors</topic><topic>Temperature</topic><topic>Temperature rise</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noll, Stefan</creatorcontrib><creatorcontrib>Winkler, Holger</creatorcontrib><creatorcontrib>Goussev, Oleg</creatorcontrib><creatorcontrib>Proxauf, Bastian</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noll, Stefan</au><au>Winkler, Holger</au><au>Goussev, Oleg</au><au>Proxauf, Bastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2020-05-06</date><risdate>2020</risdate><volume>20</volume><issue>9</issue><spage>5269</spage><epage>5292</epage><pages>5269-5292</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>OH airglow is an important nocturnal emission of the Earth's mesopause region.
As it is chemiluminescent radiation in a thin medium, the population
distribution over the various roto-vibrational OH energy levels of the
electronic ground state is not in local thermodynamic equilibrium (LTE). In
order to better understand these non-LTE effects, we studied hundreds of OH
lines in a high-quality mean spectrum based on observations with the
high-resolution Ultraviolet and Visual Echelle Spectrograph at Cerro Paranal
in Chile. Our derived populations cover vibrational levels between v=3 and 9, rotational levels up to N=24, and individual Λ-doublet
components when resolved. As the reliability of these results critically
depends on the Einstein-A coefficients used, we tested six different sets and
found clear systematic errors in all of them, especially for Q-branch lines
and individual Λ-doublet components. In order to minimise the
deviations in the populations for the same upper level, we used the most
promising coefficients from Brooke et al. (2016) and further
improved them with an empirical correction approach. The resulting rotational
level populations show a clear bimodality for each v, which is characterised
by a probably fully thermalised cold component and a hot population where the
rotational temperature increases between v=9 and 4 from about 700 to about
7000 K, and the corresponding contribution to the total population at the
lowest N decreases by an order of magnitude. The presence of the hot
populations causes non-LTE contributions to rotational temperatures at low
N, which can be estimated quite robustly based on the two-temperature model.
The bimodality is also clearly indicated by the dependence of the populations
on changes in the effective emission height of the OH emission layer. The
degree of thermalisation decreases with increasing layer height due to a
higher fraction of the hot component. Our high-quality population data are
promising with respect to a better understanding of the OH thermalisation
process.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-20-5269-2020</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1957-4170</orcidid><orcidid>https://orcid.org/0000-0001-8162-7996</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2020-05, Vol.20 (9), p.5269-5292 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f0c64690ab73442cab33dfc136aeeeac |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Airglow Chemiluminescence Coefficients Component reliability Components Datasets Emission Emissions Energy levels Height Local thermodynamic equilibrium Mesopause Population Population distribution Potassium Quality Radiation Radiation (Physics) Studies Systematic errors Temperature Temperature rise Thermodynamic equilibrium Thermodynamics Visual observation |
title | OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OH%20level%20populations%20and%20accuracies%20of%20Einstein-A%20coefficients%20from%20hundreds%20of%20measured%20lines&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Noll,%20Stefan&rft.date=2020-05-06&rft.volume=20&rft.issue=9&rft.spage=5269&rft.epage=5292&rft.pages=5269-5292&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-20-5269-2020&rft_dat=%3Cgale_doaj_%3EA622866666%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-43a6541150c5e346a7997b2421f0d4487a8490a57b0d0ac97332e40fc72746813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414671972&rft_id=info:pmid/&rft_galeid=A622866666&rfr_iscdi=true |