Loading…

Machine Learning Algorithms for Identifying Dependencies in OT Protocols

This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based o...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-05, Vol.16 (10), p.4056
Main Authors: Smolarczyk, Milosz, Pawluk, Jakub, Kotyla, Alicja, Plamowski, Sebastian, Kaminska, Katarzyna, Szczypiorski, Krzysztof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423
container_end_page
container_issue 10
container_start_page 4056
container_title Energies (Basel)
container_volume 16
creator Smolarczyk, Milosz
Pawluk, Jakub
Kotyla, Alicja
Plamowski, Sebastian
Kaminska, Katarzyna
Szczypiorski, Krzysztof
description This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).
doi_str_mv 10.3390/en16104056
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f10598681c4549079aa67cec0c7a7cf6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750889615</galeid><doaj_id>oai_doaj_org_article_f10598681c4549079aa67cec0c7a7cf6</doaj_id><sourcerecordid>A750889615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423</originalsourceid><addsrcrecordid>eNpNkUtPGzEQgFcVSCDKhV-wUm-VQu31-xhBgUhBcICzNZkdB0eJHezlwL-vaSrozGHe34w0XXfB2aUQjv2ixDVnkin9rTvlzukZZ0Yc_eefdOe1blgTIbgQ4rS7uwd8iYn6JUFJMa37-XadS5xedrUPufSLkdIUw_tH6Zr2lFqMkWofU__w1D-WPGXM2_q9Ow6wrXT-z551zze_n67uZsuH28XVfDlDodw0GzUoDoazQAhhZSVXmqR0KyZwkI6BHDStANEZO0ocVmxg3Elr0HKl5CDOusWBO2bY-H2JOyjvPkP0fxO5rD2UKeKWfOBMOastR6ka2jgAbZCQoQGDQTfWjwNrX_LrG9XJb_JbSe18P9i2VSrrZOu6PHStoUFjCnkqgE1H2kXMiUJs-blRzFqnuWoDPw8DWHKthcLnmZz5j0_5r0-JPxaIgyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819445894</pqid></control><display><type>article</type><title>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</title><source>ProQuest - Publicly Available Content Database</source><creator>Smolarczyk, Milosz ; Pawluk, Jakub ; Kotyla, Alicja ; Plamowski, Sebastian ; Kaminska, Katarzyna ; Szczypiorski, Krzysztof</creator><creatorcontrib>Smolarczyk, Milosz ; Pawluk, Jakub ; Kotyla, Alicja ; Plamowski, Sebastian ; Kaminska, Katarzyna ; Szczypiorski, Krzysztof</creatorcontrib><description>This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16104056</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Communication ; Cybercrime ; cybersecurity ; Data mining ; Denial of service attacks ; Detectors ; Differential equations ; EBM ; Electricity distribution ; GAM ; Identification methods ; Infrastructure ; Laboratories ; Learning algorithms ; Machine learning ; Modbus TCP/IP ; Nuclear energy ; Nuclear power plants ; Protocol ; Security software ; Security systems ; Software ; XGBoost</subject><ispartof>Energies (Basel), 2023-05, Vol.16 (10), p.4056</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423</cites><orcidid>0000-0001-5726-6967 ; 0000-0001-8638-8584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819445894/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819445894?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Smolarczyk, Milosz</creatorcontrib><creatorcontrib>Pawluk, Jakub</creatorcontrib><creatorcontrib>Kotyla, Alicja</creatorcontrib><creatorcontrib>Plamowski, Sebastian</creatorcontrib><creatorcontrib>Kaminska, Katarzyna</creatorcontrib><creatorcontrib>Szczypiorski, Krzysztof</creatorcontrib><title>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</title><title>Energies (Basel)</title><description>This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Communication</subject><subject>Cybercrime</subject><subject>cybersecurity</subject><subject>Data mining</subject><subject>Denial of service attacks</subject><subject>Detectors</subject><subject>Differential equations</subject><subject>EBM</subject><subject>Electricity distribution</subject><subject>GAM</subject><subject>Identification methods</subject><subject>Infrastructure</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modbus TCP/IP</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Protocol</subject><subject>Security software</subject><subject>Security systems</subject><subject>Software</subject><subject>XGBoost</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPGzEQgFcVSCDKhV-wUm-VQu31-xhBgUhBcICzNZkdB0eJHezlwL-vaSrozGHe34w0XXfB2aUQjv2ixDVnkin9rTvlzukZZ0Yc_eefdOe1blgTIbgQ4rS7uwd8iYn6JUFJMa37-XadS5xedrUPufSLkdIUw_tH6Zr2lFqMkWofU__w1D-WPGXM2_q9Ow6wrXT-z551zze_n67uZsuH28XVfDlDodw0GzUoDoazQAhhZSVXmqR0KyZwkI6BHDStANEZO0ocVmxg3Elr0HKl5CDOusWBO2bY-H2JOyjvPkP0fxO5rD2UKeKWfOBMOastR6ka2jgAbZCQoQGDQTfWjwNrX_LrG9XJb_JbSe18P9i2VSrrZOu6PHStoUFjCnkqgE1H2kXMiUJs-blRzFqnuWoDPw8DWHKthcLnmZz5j0_5r0-JPxaIgyg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Smolarczyk, Milosz</creator><creator>Pawluk, Jakub</creator><creator>Kotyla, Alicja</creator><creator>Plamowski, Sebastian</creator><creator>Kaminska, Katarzyna</creator><creator>Szczypiorski, Krzysztof</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5726-6967</orcidid><orcidid>https://orcid.org/0000-0001-8638-8584</orcidid></search><sort><creationdate>20230501</creationdate><title>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</title><author>Smolarczyk, Milosz ; Pawluk, Jakub ; Kotyla, Alicja ; Plamowski, Sebastian ; Kaminska, Katarzyna ; Szczypiorski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Communication</topic><topic>Cybercrime</topic><topic>cybersecurity</topic><topic>Data mining</topic><topic>Denial of service attacks</topic><topic>Detectors</topic><topic>Differential equations</topic><topic>EBM</topic><topic>Electricity distribution</topic><topic>GAM</topic><topic>Identification methods</topic><topic>Infrastructure</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modbus TCP/IP</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Protocol</topic><topic>Security software</topic><topic>Security systems</topic><topic>Software</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolarczyk, Milosz</creatorcontrib><creatorcontrib>Pawluk, Jakub</creatorcontrib><creatorcontrib>Kotyla, Alicja</creatorcontrib><creatorcontrib>Plamowski, Sebastian</creatorcontrib><creatorcontrib>Kaminska, Katarzyna</creatorcontrib><creatorcontrib>Szczypiorski, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolarczyk, Milosz</au><au>Pawluk, Jakub</au><au>Kotyla, Alicja</au><au>Plamowski, Sebastian</au><au>Kaminska, Katarzyna</au><au>Szczypiorski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</atitle><jtitle>Energies (Basel)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>4056</spage><pages>4056-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16104056</doi><orcidid>https://orcid.org/0000-0001-5726-6967</orcidid><orcidid>https://orcid.org/0000-0001-8638-8584</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2023-05, Vol.16 (10), p.4056
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f10598681c4549079aa67cec0c7a7cf6
source ProQuest - Publicly Available Content Database
subjects Algorithms
Analysis
Communication
Cybercrime
cybersecurity
Data mining
Denial of service attacks
Detectors
Differential equations
EBM
Electricity distribution
GAM
Identification methods
Infrastructure
Laboratories
Learning algorithms
Machine learning
Modbus TCP/IP
Nuclear energy
Nuclear power plants
Protocol
Security software
Security systems
Software
XGBoost
title Machine Learning Algorithms for Identifying Dependencies in OT Protocols
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Algorithms%20for%20Identifying%20Dependencies%20in%20OT%20Protocols&rft.jtitle=Energies%20(Basel)&rft.au=Smolarczyk,%20Milosz&rft.date=2023-05-01&rft.volume=16&rft.issue=10&rft.spage=4056&rft.pages=4056-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16104056&rft_dat=%3Cgale_doaj_%3EA750889615%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819445894&rft_id=info:pmid/&rft_galeid=A750889615&rfr_iscdi=true