Loading…
Machine Learning Algorithms for Identifying Dependencies in OT Protocols
This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based o...
Saved in:
Published in: | Energies (Basel) 2023-05, Vol.16 (10), p.4056 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423 |
container_end_page | |
container_issue | 10 |
container_start_page | 4056 |
container_title | Energies (Basel) |
container_volume | 16 |
creator | Smolarczyk, Milosz Pawluk, Jakub Kotyla, Alicja Plamowski, Sebastian Kaminska, Katarzyna Szczypiorski, Krzysztof |
description | This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System). |
doi_str_mv | 10.3390/en16104056 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f10598681c4549079aa67cec0c7a7cf6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750889615</galeid><doaj_id>oai_doaj_org_article_f10598681c4549079aa67cec0c7a7cf6</doaj_id><sourcerecordid>A750889615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423</originalsourceid><addsrcrecordid>eNpNkUtPGzEQgFcVSCDKhV-wUm-VQu31-xhBgUhBcICzNZkdB0eJHezlwL-vaSrozGHe34w0XXfB2aUQjv2ixDVnkin9rTvlzukZZ0Yc_eefdOe1blgTIbgQ4rS7uwd8iYn6JUFJMa37-XadS5xedrUPufSLkdIUw_tH6Zr2lFqMkWofU__w1D-WPGXM2_q9Ow6wrXT-z551zze_n67uZsuH28XVfDlDodw0GzUoDoazQAhhZSVXmqR0KyZwkI6BHDStANEZO0ocVmxg3Elr0HKl5CDOusWBO2bY-H2JOyjvPkP0fxO5rD2UKeKWfOBMOastR6ka2jgAbZCQoQGDQTfWjwNrX_LrG9XJb_JbSe18P9i2VSrrZOu6PHStoUFjCnkqgE1H2kXMiUJs-blRzFqnuWoDPw8DWHKthcLnmZz5j0_5r0-JPxaIgyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819445894</pqid></control><display><type>article</type><title>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</title><source>ProQuest - Publicly Available Content Database</source><creator>Smolarczyk, Milosz ; Pawluk, Jakub ; Kotyla, Alicja ; Plamowski, Sebastian ; Kaminska, Katarzyna ; Szczypiorski, Krzysztof</creator><creatorcontrib>Smolarczyk, Milosz ; Pawluk, Jakub ; Kotyla, Alicja ; Plamowski, Sebastian ; Kaminska, Katarzyna ; Szczypiorski, Krzysztof</creatorcontrib><description>This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16104056</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Communication ; Cybercrime ; cybersecurity ; Data mining ; Denial of service attacks ; Detectors ; Differential equations ; EBM ; Electricity distribution ; GAM ; Identification methods ; Infrastructure ; Laboratories ; Learning algorithms ; Machine learning ; Modbus TCP/IP ; Nuclear energy ; Nuclear power plants ; Protocol ; Security software ; Security systems ; Software ; XGBoost</subject><ispartof>Energies (Basel), 2023-05, Vol.16 (10), p.4056</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423</cites><orcidid>0000-0001-5726-6967 ; 0000-0001-8638-8584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819445894/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819445894?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Smolarczyk, Milosz</creatorcontrib><creatorcontrib>Pawluk, Jakub</creatorcontrib><creatorcontrib>Kotyla, Alicja</creatorcontrib><creatorcontrib>Plamowski, Sebastian</creatorcontrib><creatorcontrib>Kaminska, Katarzyna</creatorcontrib><creatorcontrib>Szczypiorski, Krzysztof</creatorcontrib><title>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</title><title>Energies (Basel)</title><description>This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Communication</subject><subject>Cybercrime</subject><subject>cybersecurity</subject><subject>Data mining</subject><subject>Denial of service attacks</subject><subject>Detectors</subject><subject>Differential equations</subject><subject>EBM</subject><subject>Electricity distribution</subject><subject>GAM</subject><subject>Identification methods</subject><subject>Infrastructure</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modbus TCP/IP</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Protocol</subject><subject>Security software</subject><subject>Security systems</subject><subject>Software</subject><subject>XGBoost</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtPGzEQgFcVSCDKhV-wUm-VQu31-xhBgUhBcICzNZkdB0eJHezlwL-vaSrozGHe34w0XXfB2aUQjv2ixDVnkin9rTvlzukZZ0Yc_eefdOe1blgTIbgQ4rS7uwd8iYn6JUFJMa37-XadS5xedrUPufSLkdIUw_tH6Zr2lFqMkWofU__w1D-WPGXM2_q9Ow6wrXT-z551zze_n67uZsuH28XVfDlDodw0GzUoDoazQAhhZSVXmqR0KyZwkI6BHDStANEZO0ocVmxg3Elr0HKl5CDOusWBO2bY-H2JOyjvPkP0fxO5rD2UKeKWfOBMOastR6ka2jgAbZCQoQGDQTfWjwNrX_LrG9XJb_JbSe18P9i2VSrrZOu6PHStoUFjCnkqgE1H2kXMiUJs-blRzFqnuWoDPw8DWHKthcLnmZz5j0_5r0-JPxaIgyg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Smolarczyk, Milosz</creator><creator>Pawluk, Jakub</creator><creator>Kotyla, Alicja</creator><creator>Plamowski, Sebastian</creator><creator>Kaminska, Katarzyna</creator><creator>Szczypiorski, Krzysztof</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5726-6967</orcidid><orcidid>https://orcid.org/0000-0001-8638-8584</orcidid></search><sort><creationdate>20230501</creationdate><title>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</title><author>Smolarczyk, Milosz ; Pawluk, Jakub ; Kotyla, Alicja ; Plamowski, Sebastian ; Kaminska, Katarzyna ; Szczypiorski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Communication</topic><topic>Cybercrime</topic><topic>cybersecurity</topic><topic>Data mining</topic><topic>Denial of service attacks</topic><topic>Detectors</topic><topic>Differential equations</topic><topic>EBM</topic><topic>Electricity distribution</topic><topic>GAM</topic><topic>Identification methods</topic><topic>Infrastructure</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modbus TCP/IP</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Protocol</topic><topic>Security software</topic><topic>Security systems</topic><topic>Software</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolarczyk, Milosz</creatorcontrib><creatorcontrib>Pawluk, Jakub</creatorcontrib><creatorcontrib>Kotyla, Alicja</creatorcontrib><creatorcontrib>Plamowski, Sebastian</creatorcontrib><creatorcontrib>Kaminska, Katarzyna</creatorcontrib><creatorcontrib>Szczypiorski, Krzysztof</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolarczyk, Milosz</au><au>Pawluk, Jakub</au><au>Kotyla, Alicja</au><au>Plamowski, Sebastian</au><au>Kaminska, Katarzyna</au><au>Szczypiorski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Algorithms for Identifying Dependencies in OT Protocols</atitle><jtitle>Energies (Basel)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>4056</spage><pages>4056-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This study illustrates the utility and effectiveness of machine learning algorithms in identifying dependencies in data transmitted in industrial networks. The analysis was performed for two different algorithms. The study was carried out for the XGBoost (Extreme Gradient Boosting) algorithm based on a set of decision tree model classifiers, and the second algorithm tested was the EBM (Explainable Boosting Machines), which belongs to the class of Generalized Additive Models (GAM). Tests were conducted for several test scenarios. Simulated data from static equations were used, as were data from a simulator described by dynamic differential equations, and the final one used data from an actual physical laboratory bench connected via Modbus TCP/IP. Experimental results of both techniques are presented, thus demonstrating the effectiveness of the algorithms. The results show the strength of the algorithms studied, especially against static data. For dynamic data, the results are worse, but still at a level that allows using the researched methods to identify dependencies. The algorithms presented in this paper were used as a passive protection layer of a commercial IDS (Intrusion Detection System).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16104056</doi><orcidid>https://orcid.org/0000-0001-5726-6967</orcidid><orcidid>https://orcid.org/0000-0001-8638-8584</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2023-05, Vol.16 (10), p.4056 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f10598681c4549079aa67cec0c7a7cf6 |
source | ProQuest - Publicly Available Content Database |
subjects | Algorithms Analysis Communication Cybercrime cybersecurity Data mining Denial of service attacks Detectors Differential equations EBM Electricity distribution GAM Identification methods Infrastructure Laboratories Learning algorithms Machine learning Modbus TCP/IP Nuclear energy Nuclear power plants Protocol Security software Security systems Software XGBoost |
title | Machine Learning Algorithms for Identifying Dependencies in OT Protocols |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Algorithms%20for%20Identifying%20Dependencies%20in%20OT%20Protocols&rft.jtitle=Energies%20(Basel)&rft.au=Smolarczyk,%20Milosz&rft.date=2023-05-01&rft.volume=16&rft.issue=10&rft.spage=4056&rft.pages=4056-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16104056&rft_dat=%3Cgale_doaj_%3EA750889615%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d6a51a710fecafb84156e449b03c2490a426ebacc978d4c2b02019487c8155423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819445894&rft_id=info:pmid/&rft_galeid=A750889615&rfr_iscdi=true |