Loading…
Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges
The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescenc...
Saved in:
Published in: | Proceedings of the Estonian Academy of Sciences 2022-01, Vol.71 (2), p.127-164 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03 |
---|---|
cites | |
container_end_page | 164 |
container_issue | 2 |
container_start_page | 127 |
container_title | Proceedings of the Estonian Academy of Sciences |
container_volume | 71 |
creator | Reimers, J R Rätsep, M Linnanto, J M Freiberg, A |
description | The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed. |
doi_str_mv | 10.3176/proc.2022.2.04 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f10cfea3fba34df885d13ef06bf05467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f10cfea3fba34df885d13ef06bf05467</doaj_id><sourcerecordid>2679853736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03</originalsourceid><addsrcrecordid>eNo9kUFv1DAQhSMEEqVw5RypVxIcT2In3NAKaKVKXOBsTcbjTVZunNrJYf89XrbqaUajT-_NzCuKz42oodHq6xoD1VJIWctatG-Km0aDqnQH4u1Lr0Sr3hcfUjoJoUAOcFPwYfIhhnU6e1-mlWmLIVFYz99KCgvxuu3oyxHTnL6UT8FyXMppPk5V5BT8vs1hKXHN1kgTZwQXW9IeIy9bSRN6z8uR08finUOf-NNLvS3-_vzx53BfPf7-9XD4_lgRaNgqNQCzbobGus4SWD0IqaXVPY-SCRwJ0LZzOLhRaUWoJPSqFR1SmyEUcFs8XHVtwJNZ4_yE8WwCzub_IMSjwbjN5Nm4RpBjBDcitNb1fWcbYCfU6ETXKp217q5a-bjnndNmTmGPS17fSKWHvssrq0zVV4ry31Jk9-raCHOJxVxiMZdYjDSihX_pqYM4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679853736</pqid></control><display><type>article</type><title>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Reimers, J R ; Rätsep, M ; Linnanto, J M ; Freiberg, A</creator><creatorcontrib>Reimers, J R ; Rätsep, M ; Linnanto, J M ; Freiberg, A</creatorcontrib><description>The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed.</description><identifier>ISSN: 1736-6046</identifier><identifier>EISSN: 1736-7530</identifier><identifier>DOI: 10.3176/proc.2022.2.04</identifier><language>eng</language><publisher>Tallinn: Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</publisher><subject>Absorption ; Absorption spectra ; absorption-emission asymmetry ; Adiabatic ; Adiabatic flow ; Bacteriochlorophyll ; Chlorophyll ; condon and herzberg–teller approximations ; Coupling ; Coupling (molecular) ; Density functional theory ; duschinsky rotation ; Emission spectra ; Emissions ; Excitation ; Excitation spectra ; Excitons ; Fluorescence ; Formalism ; High resolution ; Lasers ; Light ; non-adiabatic coupling ; Phaeophytin ; Photosynthesis ; photosynthetic pigments ; Pigments ; Proteins ; Quantum chemistry ; Rotation ; selective molecular spectroscopy ; Solar energy ; Spectroscopy ; Spectrum analysis ; Temperature effects</subject><ispartof>Proceedings of the Estonian Academy of Sciences, 2022-01, Vol.71 (2), p.127-164</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679853736/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679853736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Reimers, J R</creatorcontrib><creatorcontrib>Rätsep, M</creatorcontrib><creatorcontrib>Linnanto, J M</creatorcontrib><creatorcontrib>Freiberg, A</creatorcontrib><title>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</title><title>Proceedings of the Estonian Academy of Sciences</title><description>The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>absorption-emission asymmetry</subject><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Bacteriochlorophyll</subject><subject>Chlorophyll</subject><subject>condon and herzberg–teller approximations</subject><subject>Coupling</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>duschinsky rotation</subject><subject>Emission spectra</subject><subject>Emissions</subject><subject>Excitation</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Fluorescence</subject><subject>Formalism</subject><subject>High resolution</subject><subject>Lasers</subject><subject>Light</subject><subject>non-adiabatic coupling</subject><subject>Phaeophytin</subject><subject>Photosynthesis</subject><subject>photosynthetic pigments</subject><subject>Pigments</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Rotation</subject><subject>selective molecular spectroscopy</subject><subject>Solar energy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Temperature effects</subject><issn>1736-6046</issn><issn>1736-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUFv1DAQhSMEEqVw5RypVxIcT2In3NAKaKVKXOBsTcbjTVZunNrJYf89XrbqaUajT-_NzCuKz42oodHq6xoD1VJIWctatG-Km0aDqnQH4u1Lr0Sr3hcfUjoJoUAOcFPwYfIhhnU6e1-mlWmLIVFYz99KCgvxuu3oyxHTnL6UT8FyXMppPk5V5BT8vs1hKXHN1kgTZwQXW9IeIy9bSRN6z8uR08finUOf-NNLvS3-_vzx53BfPf7-9XD4_lgRaNgqNQCzbobGus4SWD0IqaXVPY-SCRwJ0LZzOLhRaUWoJPSqFR1SmyEUcFs8XHVtwJNZ4_yE8WwCzub_IMSjwbjN5Nm4RpBjBDcitNb1fWcbYCfU6ETXKp217q5a-bjnndNmTmGPS17fSKWHvssrq0zVV4ry31Jk9-raCHOJxVxiMZdYjDSihX_pqYM4</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Reimers, J R</creator><creator>Rätsep, M</creator><creator>Linnanto, J M</creator><creator>Freiberg, A</creator><general>Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</general><general>Estonian Academy Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7X2</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>DOA</scope></search><sort><creationdate>20220101</creationdate><title>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</title><author>Reimers, J R ; Rätsep, M ; Linnanto, J M ; Freiberg, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>absorption-emission asymmetry</topic><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Bacteriochlorophyll</topic><topic>Chlorophyll</topic><topic>condon and herzberg–teller approximations</topic><topic>Coupling</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>duschinsky rotation</topic><topic>Emission spectra</topic><topic>Emissions</topic><topic>Excitation</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Fluorescence</topic><topic>Formalism</topic><topic>High resolution</topic><topic>Lasers</topic><topic>Light</topic><topic>non-adiabatic coupling</topic><topic>Phaeophytin</topic><topic>Photosynthesis</topic><topic>photosynthetic pigments</topic><topic>Pigments</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Rotation</topic><topic>selective molecular spectroscopy</topic><topic>Solar energy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimers, J R</creatorcontrib><creatorcontrib>Rätsep, M</creatorcontrib><creatorcontrib>Linnanto, J M</creatorcontrib><creatorcontrib>Freiberg, A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Agricultural Science Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimers, J R</au><au>Rätsep, M</au><au>Linnanto, J M</au><au>Freiberg, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</atitle><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>71</volume><issue>2</issue><spage>127</spage><epage>164</epage><pages>127-164</pages><issn>1736-6046</issn><eissn>1736-7530</eissn><abstract>The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed.</abstract><cop>Tallinn</cop><pub>Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</pub><doi>10.3176/proc.2022.2.04</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1736-6046 |
ispartof | Proceedings of the Estonian Academy of Sciences, 2022-01, Vol.71 (2), p.127-164 |
issn | 1736-6046 1736-7530 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f10cfea3fba34df885d13ef06bf05467 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Absorption Absorption spectra absorption-emission asymmetry Adiabatic Adiabatic flow Bacteriochlorophyll Chlorophyll condon and herzberg–teller approximations Coupling Coupling (molecular) Density functional theory duschinsky rotation Emission spectra Emissions Excitation Excitation spectra Excitons Fluorescence Formalism High resolution Lasers Light non-adiabatic coupling Phaeophytin Photosynthesis photosynthetic pigments Pigments Proteins Quantum chemistry Rotation selective molecular spectroscopy Solar energy Spectroscopy Spectrum analysis Temperature effects |
title | Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlorophyll%20spectroscopy:%20conceptual%20basis,%20modern%20high-resolution%20approaches,%20and%20current%20challenges&rft.jtitle=Proceedings%20of%20the%20Estonian%20Academy%20of%20Sciences&rft.au=Reimers,%20J%20R&rft.date=2022-01-01&rft.volume=71&rft.issue=2&rft.spage=127&rft.epage=164&rft.pages=127-164&rft.issn=1736-6046&rft.eissn=1736-7530&rft_id=info:doi/10.3176/proc.2022.2.04&rft_dat=%3Cproquest_doaj_%3E2679853736%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679853736&rft_id=info:pmid/&rfr_iscdi=true |