Loading…

Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges

The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescenc...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Estonian Academy of Sciences 2022-01, Vol.71 (2), p.127-164
Main Authors: Reimers, J R, Rätsep, M, Linnanto, J M, Freiberg, A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03
cites
container_end_page 164
container_issue 2
container_start_page 127
container_title Proceedings of the Estonian Academy of Sciences
container_volume 71
creator Reimers, J R
Rätsep, M
Linnanto, J M
Freiberg, A
description The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed.
doi_str_mv 10.3176/proc.2022.2.04
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f10cfea3fba34df885d13ef06bf05467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f10cfea3fba34df885d13ef06bf05467</doaj_id><sourcerecordid>2679853736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03</originalsourceid><addsrcrecordid>eNo9kUFv1DAQhSMEEqVw5RypVxIcT2In3NAKaKVKXOBsTcbjTVZunNrJYf89XrbqaUajT-_NzCuKz42oodHq6xoD1VJIWctatG-Km0aDqnQH4u1Lr0Sr3hcfUjoJoUAOcFPwYfIhhnU6e1-mlWmLIVFYz99KCgvxuu3oyxHTnL6UT8FyXMppPk5V5BT8vs1hKXHN1kgTZwQXW9IeIy9bSRN6z8uR08finUOf-NNLvS3-_vzx53BfPf7-9XD4_lgRaNgqNQCzbobGus4SWD0IqaXVPY-SCRwJ0LZzOLhRaUWoJPSqFR1SmyEUcFs8XHVtwJNZ4_yE8WwCzub_IMSjwbjN5Nm4RpBjBDcitNb1fWcbYCfU6ETXKp217q5a-bjnndNmTmGPS17fSKWHvssrq0zVV4ry31Jk9-raCHOJxVxiMZdYjDSihX_pqYM4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679853736</pqid></control><display><type>article</type><title>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Reimers, J R ; Rätsep, M ; Linnanto, J M ; Freiberg, A</creator><creatorcontrib>Reimers, J R ; Rätsep, M ; Linnanto, J M ; Freiberg, A</creatorcontrib><description>The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed.</description><identifier>ISSN: 1736-6046</identifier><identifier>EISSN: 1736-7530</identifier><identifier>DOI: 10.3176/proc.2022.2.04</identifier><language>eng</language><publisher>Tallinn: Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</publisher><subject>Absorption ; Absorption spectra ; absorption-emission asymmetry ; Adiabatic ; Adiabatic flow ; Bacteriochlorophyll ; Chlorophyll ; condon and herzberg–teller approximations ; Coupling ; Coupling (molecular) ; Density functional theory ; duschinsky rotation ; Emission spectra ; Emissions ; Excitation ; Excitation spectra ; Excitons ; Fluorescence ; Formalism ; High resolution ; Lasers ; Light ; non-adiabatic coupling ; Phaeophytin ; Photosynthesis ; photosynthetic pigments ; Pigments ; Proteins ; Quantum chemistry ; Rotation ; selective molecular spectroscopy ; Solar energy ; Spectroscopy ; Spectrum analysis ; Temperature effects</subject><ispartof>Proceedings of the Estonian Academy of Sciences, 2022-01, Vol.71 (2), p.127-164</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679853736/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679853736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Reimers, J R</creatorcontrib><creatorcontrib>Rätsep, M</creatorcontrib><creatorcontrib>Linnanto, J M</creatorcontrib><creatorcontrib>Freiberg, A</creatorcontrib><title>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</title><title>Proceedings of the Estonian Academy of Sciences</title><description>The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed.</description><subject>Absorption</subject><subject>Absorption spectra</subject><subject>absorption-emission asymmetry</subject><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Bacteriochlorophyll</subject><subject>Chlorophyll</subject><subject>condon and herzberg–teller approximations</subject><subject>Coupling</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>duschinsky rotation</subject><subject>Emission spectra</subject><subject>Emissions</subject><subject>Excitation</subject><subject>Excitation spectra</subject><subject>Excitons</subject><subject>Fluorescence</subject><subject>Formalism</subject><subject>High resolution</subject><subject>Lasers</subject><subject>Light</subject><subject>non-adiabatic coupling</subject><subject>Phaeophytin</subject><subject>Photosynthesis</subject><subject>photosynthetic pigments</subject><subject>Pigments</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Rotation</subject><subject>selective molecular spectroscopy</subject><subject>Solar energy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Temperature effects</subject><issn>1736-6046</issn><issn>1736-7530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUFv1DAQhSMEEqVw5RypVxIcT2In3NAKaKVKXOBsTcbjTVZunNrJYf89XrbqaUajT-_NzCuKz42oodHq6xoD1VJIWctatG-Km0aDqnQH4u1Lr0Sr3hcfUjoJoUAOcFPwYfIhhnU6e1-mlWmLIVFYz99KCgvxuu3oyxHTnL6UT8FyXMppPk5V5BT8vs1hKXHN1kgTZwQXW9IeIy9bSRN6z8uR08finUOf-NNLvS3-_vzx53BfPf7-9XD4_lgRaNgqNQCzbobGus4SWD0IqaXVPY-SCRwJ0LZzOLhRaUWoJPSqFR1SmyEUcFs8XHVtwJNZ4_yE8WwCzub_IMSjwbjN5Nm4RpBjBDcitNb1fWcbYCfU6ETXKp217q5a-bjnndNmTmGPS17fSKWHvssrq0zVV4ry31Jk9-raCHOJxVxiMZdYjDSihX_pqYM4</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Reimers, J R</creator><creator>Rätsep, M</creator><creator>Linnanto, J M</creator><creator>Freiberg, A</creator><general>Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</general><general>Estonian Academy Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7X2</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>DOA</scope></search><sort><creationdate>20220101</creationdate><title>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</title><author>Reimers, J R ; Rätsep, M ; Linnanto, J M ; Freiberg, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Absorption spectra</topic><topic>absorption-emission asymmetry</topic><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Bacteriochlorophyll</topic><topic>Chlorophyll</topic><topic>condon and herzberg–teller approximations</topic><topic>Coupling</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>duschinsky rotation</topic><topic>Emission spectra</topic><topic>Emissions</topic><topic>Excitation</topic><topic>Excitation spectra</topic><topic>Excitons</topic><topic>Fluorescence</topic><topic>Formalism</topic><topic>High resolution</topic><topic>Lasers</topic><topic>Light</topic><topic>non-adiabatic coupling</topic><topic>Phaeophytin</topic><topic>Photosynthesis</topic><topic>photosynthetic pigments</topic><topic>Pigments</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Rotation</topic><topic>selective molecular spectroscopy</topic><topic>Solar energy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimers, J R</creatorcontrib><creatorcontrib>Rätsep, M</creatorcontrib><creatorcontrib>Linnanto, J M</creatorcontrib><creatorcontrib>Freiberg, A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Agricultural Science Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimers, J R</au><au>Rätsep, M</au><au>Linnanto, J M</au><au>Freiberg, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges</atitle><jtitle>Proceedings of the Estonian Academy of Sciences</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>71</volume><issue>2</issue><spage>127</spage><epage>164</epage><pages>127-164</pages><issn>1736-6046</issn><eissn>1736-7530</eissn><abstract>The conceptual formalism to understand the properties and function of chlorophylls in the gas and solution phases as well as in protein matrices is reviewed. This formalism is then applied to interpret modern high-resolution spectroscopic data, resulting from methods such as differential fluorescence line-narrowing spectroscopy and selective fluorescence excitation spectroscopy, which resolve individual vibrational transitions within the inhomogeneously broadened emission and absorption spectra of chlorophyll-a, bacteriochlorophyll-a, and pheophytin-a. Density functional theory and ab initio quantum chemical calculations are applied to interpret this data and fill in missing information needed to understand photosynthetic processes. The focus is placed on recognizing environmental and thermal effects, as well as the roles of Duschinsky rotation and non-adiabatic coupling in controlling the spectra. A critical feature of chlorophyll spectroscopy is determined to be absorption-emission asymmetry. Its ramifications for chlorophyll's function in photosystems are expected to be significant, as most current models for understanding their function assume that absorption and emission are symmetric, i.e. in the absence of relaxation processes, molecules coherently re-emit the light that they absorbed to enact exciton transport. The effect of the Duschinsky rotation is that after vibrational excitation during the electronic transition chlorophylls mostly emit light at different energies to what they absorb, while the effect of non-adiabatic coupling is that the polarization of the light is changed.</abstract><cop>Tallinn</cop><pub>Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)</pub><doi>10.3176/proc.2022.2.04</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1736-6046
ispartof Proceedings of the Estonian Academy of Sciences, 2022-01, Vol.71 (2), p.127-164
issn 1736-6046
1736-7530
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f10cfea3fba34df885d13ef06bf05467
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Absorption
Absorption spectra
absorption-emission asymmetry
Adiabatic
Adiabatic flow
Bacteriochlorophyll
Chlorophyll
condon and herzberg–teller approximations
Coupling
Coupling (molecular)
Density functional theory
duschinsky rotation
Emission spectra
Emissions
Excitation
Excitation spectra
Excitons
Fluorescence
Formalism
High resolution
Lasers
Light
non-adiabatic coupling
Phaeophytin
Photosynthesis
photosynthetic pigments
Pigments
Proteins
Quantum chemistry
Rotation
selective molecular spectroscopy
Solar energy
Spectroscopy
Spectrum analysis
Temperature effects
title Chlorophyll spectroscopy: conceptual basis, modern high-resolution approaches, and current challenges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlorophyll%20spectroscopy:%20conceptual%20basis,%20modern%20high-resolution%20approaches,%20and%20current%20challenges&rft.jtitle=Proceedings%20of%20the%20Estonian%20Academy%20of%20Sciences&rft.au=Reimers,%20J%20R&rft.date=2022-01-01&rft.volume=71&rft.issue=2&rft.spage=127&rft.epage=164&rft.pages=127-164&rft.issn=1736-6046&rft.eissn=1736-7530&rft_id=info:doi/10.3176/proc.2022.2.04&rft_dat=%3Cproquest_doaj_%3E2679853736%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-693ee7191df5dc3d790272d78eb2ec3fc037d5fa9fb676ca62386405ac4d78a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679853736&rft_id=info:pmid/&rfr_iscdi=true