Loading…
Activation of SIRT1 promotes membrane resealing via cortactin
Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patient...
Saved in:
Published in: | Scientific reports 2022-09, Vol.12 (1), p.15328-15328, Article 15328 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3 |
container_end_page | 15328 |
container_issue | 1 |
container_start_page | 15328 |
container_title | Scientific reports |
container_volume | 12 |
creator | Iwahara, Naotoshi Azekami, Kuya Hosoda, Ryusuke Nojima, Iyori Hisahara, Shin Kuno, Atsushi |
description | Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient
mdx
mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis. |
doi_str_mv | 10.1038/s41598-022-19136-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f148552532ae4ed08cfa1bbd788a6242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f148552532ae4ed08cfa1bbd788a6242</doaj_id><sourcerecordid>2714060052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYMotqz9Aj4N-OLLaG7-TfKgUIq2CwVB63O4k7mzzjIzWZPZhX57s92i1gcDISE555dwDmOvgb8DLu37rEA7W3MhanAgTQ3P2LngStdCCvH8r_0Zu8h5y8vQwilwL9mZNNw1XMA5-3AZluGAyxDnKvbVt_XXO6h2KU5xoVxNNLUJZ6oSZcJxmDfVYcAqxLRg8c2v2Isex0wXj-uKff_86e7qpr79cr2-urytg7ZyqcGY3nWt67WTBkibzjXQKm2p7RFc0diOEPsQhMUmYEOSrNLOdabnTqNcsfWJ20Xc-l0aJkz3PuLgHw5i2nhMyxBG8j0oq7XQUiAp6rgN5Ym27Rpr0QglCuvjibXbtxN1geYl4fgE-vRmHn74TTx4p4wFLQvg7SMgxZ97youfhhxoHEtQcZ-9aEBxc0y7SN_8I93GfZpLVEeVBCV1mSsmTqqQYs6J-t-fAe6PZftT2b6U7R_K9lBM8mTKRTxvKP1B_8f1Cynnqi0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713143514</pqid></control><display><type>article</type><title>Activation of SIRT1 promotes membrane resealing via cortactin</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Iwahara, Naotoshi ; Azekami, Kuya ; Hosoda, Ryusuke ; Nojima, Iyori ; Hisahara, Shin ; Kuno, Atsushi</creator><creatorcontrib>Iwahara, Naotoshi ; Azekami, Kuya ; Hosoda, Ryusuke ; Nojima, Iyori ; Hisahara, Shin ; Kuno, Atsushi</creatorcontrib><description>Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient
mdx
mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-19136-1</identifier><identifier>PMID: 36097021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436 ; 631/80/128/1276 ; 631/80/2023/2022 ; Actin ; Cell activation ; Cytoskeleton ; Dystrophin ; Dystrophy ; Gene therapy ; Humanities and Social Sciences ; Hypotheses ; Kinases ; Lasers ; Membranes ; multidisciplinary ; Muscular dystrophy ; Myotubes ; Proteins ; Resveratrol ; Science ; Science (multidisciplinary) ; SIRT1 protein</subject><ispartof>Scientific reports, 2022-09, Vol.12 (1), p.15328-15328, Article 15328</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</citedby><cites>FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2713143514/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2713143514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Iwahara, Naotoshi</creatorcontrib><creatorcontrib>Azekami, Kuya</creatorcontrib><creatorcontrib>Hosoda, Ryusuke</creatorcontrib><creatorcontrib>Nojima, Iyori</creatorcontrib><creatorcontrib>Hisahara, Shin</creatorcontrib><creatorcontrib>Kuno, Atsushi</creatorcontrib><title>Activation of SIRT1 promotes membrane resealing via cortactin</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient
mdx
mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.</description><subject>631/154/436</subject><subject>631/80/128/1276</subject><subject>631/80/2023/2022</subject><subject>Actin</subject><subject>Cell activation</subject><subject>Cytoskeleton</subject><subject>Dystrophin</subject><subject>Dystrophy</subject><subject>Gene therapy</subject><subject>Humanities and Social Sciences</subject><subject>Hypotheses</subject><subject>Kinases</subject><subject>Lasers</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Muscular dystrophy</subject><subject>Myotubes</subject><subject>Proteins</subject><subject>Resveratrol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SIRT1 protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV9rFDEUxYMotqz9Aj4N-OLLaG7-TfKgUIq2CwVB63O4k7mzzjIzWZPZhX57s92i1gcDISE555dwDmOvgb8DLu37rEA7W3MhanAgTQ3P2LngStdCCvH8r_0Zu8h5y8vQwilwL9mZNNw1XMA5-3AZluGAyxDnKvbVt_XXO6h2KU5xoVxNNLUJZ6oSZcJxmDfVYcAqxLRg8c2v2Isex0wXj-uKff_86e7qpr79cr2-urytg7ZyqcGY3nWt67WTBkibzjXQKm2p7RFc0diOEPsQhMUmYEOSrNLOdabnTqNcsfWJ20Xc-l0aJkz3PuLgHw5i2nhMyxBG8j0oq7XQUiAp6rgN5Ym27Rpr0QglCuvjibXbtxN1geYl4fgE-vRmHn74TTx4p4wFLQvg7SMgxZ97youfhhxoHEtQcZ-9aEBxc0y7SN_8I93GfZpLVEeVBCV1mSsmTqqQYs6J-t-fAe6PZftT2b6U7R_K9lBM8mTKRTxvKP1B_8f1Cynnqi0</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Iwahara, Naotoshi</creator><creator>Azekami, Kuya</creator><creator>Hosoda, Ryusuke</creator><creator>Nojima, Iyori</creator><creator>Hisahara, Shin</creator><creator>Kuno, Atsushi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220912</creationdate><title>Activation of SIRT1 promotes membrane resealing via cortactin</title><author>Iwahara, Naotoshi ; Azekami, Kuya ; Hosoda, Ryusuke ; Nojima, Iyori ; Hisahara, Shin ; Kuno, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/154/436</topic><topic>631/80/128/1276</topic><topic>631/80/2023/2022</topic><topic>Actin</topic><topic>Cell activation</topic><topic>Cytoskeleton</topic><topic>Dystrophin</topic><topic>Dystrophy</topic><topic>Gene therapy</topic><topic>Humanities and Social Sciences</topic><topic>Hypotheses</topic><topic>Kinases</topic><topic>Lasers</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Muscular dystrophy</topic><topic>Myotubes</topic><topic>Proteins</topic><topic>Resveratrol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SIRT1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwahara, Naotoshi</creatorcontrib><creatorcontrib>Azekami, Kuya</creatorcontrib><creatorcontrib>Hosoda, Ryusuke</creatorcontrib><creatorcontrib>Nojima, Iyori</creatorcontrib><creatorcontrib>Hisahara, Shin</creatorcontrib><creatorcontrib>Kuno, Atsushi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwahara, Naotoshi</au><au>Azekami, Kuya</au><au>Hosoda, Ryusuke</au><au>Nojima, Iyori</au><au>Hisahara, Shin</au><au>Kuno, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of SIRT1 promotes membrane resealing via cortactin</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2022-09-12</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>15328</spage><epage>15328</epage><pages>15328-15328</pages><artnum>15328</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient
mdx
mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36097021</pmid><doi>10.1038/s41598-022-19136-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2022-09, Vol.12 (1), p.15328-15328, Article 15328 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f148552532ae4ed08cfa1bbd788a6242 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/154/436 631/80/128/1276 631/80/2023/2022 Actin Cell activation Cytoskeleton Dystrophin Dystrophy Gene therapy Humanities and Social Sciences Hypotheses Kinases Lasers Membranes multidisciplinary Muscular dystrophy Myotubes Proteins Resveratrol Science Science (multidisciplinary) SIRT1 protein |
title | Activation of SIRT1 promotes membrane resealing via cortactin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20SIRT1%20promotes%20membrane%20resealing%20via%20cortactin&rft.jtitle=Scientific%20reports&rft.au=Iwahara,%20Naotoshi&rft.date=2022-09-12&rft.volume=12&rft.issue=1&rft.spage=15328&rft.epage=15328&rft.pages=15328-15328&rft.artnum=15328&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-19136-1&rft_dat=%3Cproquest_doaj_%3E2714060052%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2713143514&rft_id=info:pmid/36097021&rfr_iscdi=true |