Loading…

Activation of SIRT1 promotes membrane resealing via cortactin

Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patient...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-09, Vol.12 (1), p.15328-15328, Article 15328
Main Authors: Iwahara, Naotoshi, Azekami, Kuya, Hosoda, Ryusuke, Nojima, Iyori, Hisahara, Shin, Kuno, Atsushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3
cites cdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3
container_end_page 15328
container_issue 1
container_start_page 15328
container_title Scientific reports
container_volume 12
creator Iwahara, Naotoshi
Azekami, Kuya
Hosoda, Ryusuke
Nojima, Iyori
Hisahara, Shin
Kuno, Atsushi
description Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.
doi_str_mv 10.1038/s41598-022-19136-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f148552532ae4ed08cfa1bbd788a6242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f148552532ae4ed08cfa1bbd788a6242</doaj_id><sourcerecordid>2714060052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYMotqz9Aj4N-OLLaG7-TfKgUIq2CwVB63O4k7mzzjIzWZPZhX57s92i1gcDISE555dwDmOvgb8DLu37rEA7W3MhanAgTQ3P2LngStdCCvH8r_0Zu8h5y8vQwilwL9mZNNw1XMA5-3AZluGAyxDnKvbVt_XXO6h2KU5xoVxNNLUJZ6oSZcJxmDfVYcAqxLRg8c2v2Isex0wXj-uKff_86e7qpr79cr2-urytg7ZyqcGY3nWt67WTBkibzjXQKm2p7RFc0diOEPsQhMUmYEOSrNLOdabnTqNcsfWJ20Xc-l0aJkz3PuLgHw5i2nhMyxBG8j0oq7XQUiAp6rgN5Ym27Rpr0QglCuvjibXbtxN1geYl4fgE-vRmHn74TTx4p4wFLQvg7SMgxZ97youfhhxoHEtQcZ-9aEBxc0y7SN_8I93GfZpLVEeVBCV1mSsmTqqQYs6J-t-fAe6PZftT2b6U7R_K9lBM8mTKRTxvKP1B_8f1Cynnqi0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713143514</pqid></control><display><type>article</type><title>Activation of SIRT1 promotes membrane resealing via cortactin</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Iwahara, Naotoshi ; Azekami, Kuya ; Hosoda, Ryusuke ; Nojima, Iyori ; Hisahara, Shin ; Kuno, Atsushi</creator><creatorcontrib>Iwahara, Naotoshi ; Azekami, Kuya ; Hosoda, Ryusuke ; Nojima, Iyori ; Hisahara, Shin ; Kuno, Atsushi</creatorcontrib><description>Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-19136-1</identifier><identifier>PMID: 36097021</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436 ; 631/80/128/1276 ; 631/80/2023/2022 ; Actin ; Cell activation ; Cytoskeleton ; Dystrophin ; Dystrophy ; Gene therapy ; Humanities and Social Sciences ; Hypotheses ; Kinases ; Lasers ; Membranes ; multidisciplinary ; Muscular dystrophy ; Myotubes ; Proteins ; Resveratrol ; Science ; Science (multidisciplinary) ; SIRT1 protein</subject><ispartof>Scientific reports, 2022-09, Vol.12 (1), p.15328-15328, Article 15328</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</citedby><cites>FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2713143514/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2713143514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Iwahara, Naotoshi</creatorcontrib><creatorcontrib>Azekami, Kuya</creatorcontrib><creatorcontrib>Hosoda, Ryusuke</creatorcontrib><creatorcontrib>Nojima, Iyori</creatorcontrib><creatorcontrib>Hisahara, Shin</creatorcontrib><creatorcontrib>Kuno, Atsushi</creatorcontrib><title>Activation of SIRT1 promotes membrane resealing via cortactin</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.</description><subject>631/154/436</subject><subject>631/80/128/1276</subject><subject>631/80/2023/2022</subject><subject>Actin</subject><subject>Cell activation</subject><subject>Cytoskeleton</subject><subject>Dystrophin</subject><subject>Dystrophy</subject><subject>Gene therapy</subject><subject>Humanities and Social Sciences</subject><subject>Hypotheses</subject><subject>Kinases</subject><subject>Lasers</subject><subject>Membranes</subject><subject>multidisciplinary</subject><subject>Muscular dystrophy</subject><subject>Myotubes</subject><subject>Proteins</subject><subject>Resveratrol</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SIRT1 protein</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV9rFDEUxYMotqz9Aj4N-OLLaG7-TfKgUIq2CwVB63O4k7mzzjIzWZPZhX57s92i1gcDISE555dwDmOvgb8DLu37rEA7W3MhanAgTQ3P2LngStdCCvH8r_0Zu8h5y8vQwilwL9mZNNw1XMA5-3AZluGAyxDnKvbVt_XXO6h2KU5xoVxNNLUJZ6oSZcJxmDfVYcAqxLRg8c2v2Isex0wXj-uKff_86e7qpr79cr2-urytg7ZyqcGY3nWt67WTBkibzjXQKm2p7RFc0diOEPsQhMUmYEOSrNLOdabnTqNcsfWJ20Xc-l0aJkz3PuLgHw5i2nhMyxBG8j0oq7XQUiAp6rgN5Ym27Rpr0QglCuvjibXbtxN1geYl4fgE-vRmHn74TTx4p4wFLQvg7SMgxZ97youfhhxoHEtQcZ-9aEBxc0y7SN_8I93GfZpLVEeVBCV1mSsmTqqQYs6J-t-fAe6PZftT2b6U7R_K9lBM8mTKRTxvKP1B_8f1Cynnqi0</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Iwahara, Naotoshi</creator><creator>Azekami, Kuya</creator><creator>Hosoda, Ryusuke</creator><creator>Nojima, Iyori</creator><creator>Hisahara, Shin</creator><creator>Kuno, Atsushi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220912</creationdate><title>Activation of SIRT1 promotes membrane resealing via cortactin</title><author>Iwahara, Naotoshi ; Azekami, Kuya ; Hosoda, Ryusuke ; Nojima, Iyori ; Hisahara, Shin ; Kuno, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/154/436</topic><topic>631/80/128/1276</topic><topic>631/80/2023/2022</topic><topic>Actin</topic><topic>Cell activation</topic><topic>Cytoskeleton</topic><topic>Dystrophin</topic><topic>Dystrophy</topic><topic>Gene therapy</topic><topic>Humanities and Social Sciences</topic><topic>Hypotheses</topic><topic>Kinases</topic><topic>Lasers</topic><topic>Membranes</topic><topic>multidisciplinary</topic><topic>Muscular dystrophy</topic><topic>Myotubes</topic><topic>Proteins</topic><topic>Resveratrol</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SIRT1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwahara, Naotoshi</creatorcontrib><creatorcontrib>Azekami, Kuya</creatorcontrib><creatorcontrib>Hosoda, Ryusuke</creatorcontrib><creatorcontrib>Nojima, Iyori</creatorcontrib><creatorcontrib>Hisahara, Shin</creatorcontrib><creatorcontrib>Kuno, Atsushi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwahara, Naotoshi</au><au>Azekami, Kuya</au><au>Hosoda, Ryusuke</au><au>Nojima, Iyori</au><au>Hisahara, Shin</au><au>Kuno, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of SIRT1 promotes membrane resealing via cortactin</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2022-09-12</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>15328</spage><epage>15328</epage><pages>15328-15328</pages><artnum>15328</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36097021</pmid><doi>10.1038/s41598-022-19136-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2022-09, Vol.12 (1), p.15328-15328, Article 15328
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f148552532ae4ed08cfa1bbd788a6242
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/154/436
631/80/128/1276
631/80/2023/2022
Actin
Cell activation
Cytoskeleton
Dystrophin
Dystrophy
Gene therapy
Humanities and Social Sciences
Hypotheses
Kinases
Lasers
Membranes
multidisciplinary
Muscular dystrophy
Myotubes
Proteins
Resveratrol
Science
Science (multidisciplinary)
SIRT1 protein
title Activation of SIRT1 promotes membrane resealing via cortactin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20SIRT1%20promotes%20membrane%20resealing%20via%20cortactin&rft.jtitle=Scientific%20reports&rft.au=Iwahara,%20Naotoshi&rft.date=2022-09-12&rft.volume=12&rft.issue=1&rft.spage=15328&rft.epage=15328&rft.pages=15328-15328&rft.artnum=15328&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-19136-1&rft_dat=%3Cproquest_doaj_%3E2714060052%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-166f9db9f59361e56d971b458ebfa195838deaafcc28a7ca7e3e84599d6f095a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2713143514&rft_id=info:pmid/36097021&rfr_iscdi=true