Loading…
Hydraulic modeling of a compact stormwater treatment device applying concepts of dynamic similitude
The development of compact treatment devices (CTDs) with high removal efficiencies and low space requirements is a key objective of urban stormwater treatment. Thus, many devices utilize a combination of sedimentation and upward-flow filtration in a single system. Here, sedimentation is used before...
Saved in:
Published in: | Water science and technology 2023-02, Vol.87 (4), p.954-968 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of compact treatment devices (CTDs) with high removal efficiencies and low space requirements is a key objective of urban stormwater treatment. Thus, many devices utilize a combination of sedimentation and upward-flow filtration in a single system. Here, sedimentation is used before filtration, which makes it difficult to evaluate the individual treatment stages separately. This study determines the removal efficiency by sedimentation and the expected filter load in a specific compact treatment device designed for a catchment area of up to 10,000 m
. In contrast to a full-scale investigation, small-scale physical hydraulic modeling is applied as a new cost-saving alternative. To validate upscaling laws, tracer signals and particle-size-specific removal efficiencies are determined for two geometrically similar models at different length scales. Thereby, Reynolds number similarity produces similar flow patterns, while the similarity of Hazen numbers allows to upscale removal efficiencies. Upscaling to the full-scale reveals that the filter in the device is only partly loaded by particulate matter that consists mostly of particles ≤63 μm. Thus, sedimentation upstream of a filter is of relevant importance in CTDs. The proposed dimensionless relationship may be used for particles from different catchments and helps to size the device accordingly. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2023.025 |