Loading…
A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping
The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell b...
Saved in:
Published in: | Brain sciences 2023-04, Vol.13 (5), p.711 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3 |
container_end_page | |
container_issue | 5 |
container_start_page | 711 |
container_title | Brain sciences |
container_volume | 13 |
creator | Wang, Tianyi Shi, Peiyao Luo, Dingsan Guo, Jun Liu, Hui Yuan, Jinyun Jin, Haiqun Wu, Xiaolong Zhang, Yueyi Xiong, Zhiwei Zhu, Jinlong Zhou, Renjie Zhang, Ruobing |
description | The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images. |
doi_str_mv | 10.3390/brainsci13050711 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f1769685e48d45dda0545b9403e8ab2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752359457</galeid><doaj_id>oai_doaj_org_article_f1769685e48d45dda0545b9403e8ab2a</doaj_id><sourcerecordid>A752359457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpnROyxIVLij-T-ISWVYGVuuqhcOBkTfyR9Sqxg5Ntxb_Hy5Zqt8I-eDR-3tee0RTFW4KvGJP4Y5vAh0l7wrDANSEvinOK66pknIqXR_FZcTlNW5xXgzET-HVxxmrKJGnYefFzgZYx3NvgbZjRou_Lpe17dDvOXkOPVgN0PnRobedNNBkdRph921v04OcNurPJZ-rueo1cTOjz_kdoDeOYNW-KVw76yV4-nhfFjy_X35ffypvbr6vl4qbUgpC5BFE54oxxsmINrrjRrAYHzlCaY6JJy3TjsGsYqYAzozHouiGcaclczTW7KFYHXxNhq8bkB0i_VQSv_iZi6hSkXE1vlSN1JatGWN4YLowBLLhoJcfMNtBSyF6fDl7jrh2s0bknCfoT09Ob4Deqi_eKYEoqIXF2-PDokOKvnZ1mNfhJ55ZCsHE3KdpQjElFOc_o-2foNu5SyL3KFJFM1EQeUR3kCnxwMT-s96ZqUQvKhOSiztTVf6i8jR28jsE6n_MnAnwQ6BSnKVn3VCTBaj9e6vl4Zcm74-Y8Cf4NE_sDUXPKFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819357194</pqid></control><display><type>article</type><title>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Tianyi ; Shi, Peiyao ; Luo, Dingsan ; Guo, Jun ; Liu, Hui ; Yuan, Jinyun ; Jin, Haiqun ; Wu, Xiaolong ; Zhang, Yueyi ; Xiong, Zhiwei ; Zhu, Jinlong ; Zhou, Renjie ; Zhang, Ruobing</creator><creatorcontrib>Wang, Tianyi ; Shi, Peiyao ; Luo, Dingsan ; Guo, Jun ; Liu, Hui ; Yuan, Jinyun ; Jin, Haiqun ; Wu, Xiaolong ; Zhang, Yueyi ; Xiong, Zhiwei ; Zhu, Jinlong ; Zhou, Renjie ; Zhang, Ruobing</creatorcontrib><description>The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci13050711</identifier><identifier>PMID: 37239183</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Automation ; Brain mapping ; Carbon ; cell classification ; Coatings ; Contamination ; correlative light and electron microscopy ; Costs ; Electron microscopes ; Electron microscopy ; Localization ; Mapping ; Methods ; Neural networks ; Neuroimaging ; Neurons ; Neurophysiology ; optical multilayer interference tomography ; Protective coatings ; Scanning electron microscopy ; Silicon wafers ; Structure-function relationships ; Tomography</subject><ispartof>Brain sciences, 2023-04, Vol.13 (5), p.711</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819357194/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819357194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37239183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Shi, Peiyao</creatorcontrib><creatorcontrib>Luo, Dingsan</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Yuan, Jinyun</creatorcontrib><creatorcontrib>Jin, Haiqun</creatorcontrib><creatorcontrib>Wu, Xiaolong</creatorcontrib><creatorcontrib>Zhang, Yueyi</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Zhou, Renjie</creatorcontrib><creatorcontrib>Zhang, Ruobing</creatorcontrib><title>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.</description><subject>Automation</subject><subject>Brain mapping</subject><subject>Carbon</subject><subject>cell classification</subject><subject>Coatings</subject><subject>Contamination</subject><subject>correlative light and electron microscopy</subject><subject>Costs</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Localization</subject><subject>Mapping</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>optical multilayer interference tomography</subject><subject>Protective coatings</subject><subject>Scanning electron microscopy</subject><subject>Silicon wafers</subject><subject>Structure-function relationships</subject><subject>Tomography</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpnROyxIVLij-T-ISWVYGVuuqhcOBkTfyR9Sqxg5Ntxb_Hy5Zqt8I-eDR-3tee0RTFW4KvGJP4Y5vAh0l7wrDANSEvinOK66pknIqXR_FZcTlNW5xXgzET-HVxxmrKJGnYefFzgZYx3NvgbZjRou_Lpe17dDvOXkOPVgN0PnRobedNNBkdRph921v04OcNurPJZ-rueo1cTOjz_kdoDeOYNW-KVw76yV4-nhfFjy_X35ffypvbr6vl4qbUgpC5BFE54oxxsmINrrjRrAYHzlCaY6JJy3TjsGsYqYAzozHouiGcaclczTW7KFYHXxNhq8bkB0i_VQSv_iZi6hSkXE1vlSN1JatGWN4YLowBLLhoJcfMNtBSyF6fDl7jrh2s0bknCfoT09Ob4Deqi_eKYEoqIXF2-PDokOKvnZ1mNfhJ55ZCsHE3KdpQjElFOc_o-2foNu5SyL3KFJFM1EQeUR3kCnxwMT-s96ZqUQvKhOSiztTVf6i8jR28jsE6n_MnAnwQ6BSnKVn3VCTBaj9e6vl4Zcm74-Y8Cf4NE_sDUXPKFg</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Wang, Tianyi</creator><creator>Shi, Peiyao</creator><creator>Luo, Dingsan</creator><creator>Guo, Jun</creator><creator>Liu, Hui</creator><creator>Yuan, Jinyun</creator><creator>Jin, Haiqun</creator><creator>Wu, Xiaolong</creator><creator>Zhang, Yueyi</creator><creator>Xiong, Zhiwei</creator><creator>Zhu, Jinlong</creator><creator>Zhou, Renjie</creator><creator>Zhang, Ruobing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230424</creationdate><title>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</title><author>Wang, Tianyi ; Shi, Peiyao ; Luo, Dingsan ; Guo, Jun ; Liu, Hui ; Yuan, Jinyun ; Jin, Haiqun ; Wu, Xiaolong ; Zhang, Yueyi ; Xiong, Zhiwei ; Zhu, Jinlong ; Zhou, Renjie ; Zhang, Ruobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Brain mapping</topic><topic>Carbon</topic><topic>cell classification</topic><topic>Coatings</topic><topic>Contamination</topic><topic>correlative light and electron microscopy</topic><topic>Costs</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Localization</topic><topic>Mapping</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>optical multilayer interference tomography</topic><topic>Protective coatings</topic><topic>Scanning electron microscopy</topic><topic>Silicon wafers</topic><topic>Structure-function relationships</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Shi, Peiyao</creatorcontrib><creatorcontrib>Luo, Dingsan</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Yuan, Jinyun</creatorcontrib><creatorcontrib>Jin, Haiqun</creatorcontrib><creatorcontrib>Wu, Xiaolong</creatorcontrib><creatorcontrib>Zhang, Yueyi</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Zhou, Renjie</creatorcontrib><creatorcontrib>Zhang, Ruobing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tianyi</au><au>Shi, Peiyao</au><au>Luo, Dingsan</au><au>Guo, Jun</au><au>Liu, Hui</au><au>Yuan, Jinyun</au><au>Jin, Haiqun</au><au>Wu, Xiaolong</au><au>Zhang, Yueyi</au><au>Xiong, Zhiwei</au><au>Zhu, Jinlong</au><au>Zhou, Renjie</au><au>Zhang, Ruobing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>711</spage><pages>711-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37239183</pmid><doi>10.3390/brainsci13050711</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3425 |
ispartof | Brain sciences, 2023-04, Vol.13 (5), p.711 |
issn | 2076-3425 2076-3425 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f1769685e48d45dda0545b9403e8ab2a |
source | Publicly Available Content Database; PubMed Central |
subjects | Automation Brain mapping Carbon cell classification Coatings Contamination correlative light and electron microscopy Costs Electron microscopes Electron microscopy Localization Mapping Methods Neural networks Neuroimaging Neurons Neurophysiology optical multilayer interference tomography Protective coatings Scanning electron microscopy Silicon wafers Structure-function relationships Tomography |
title | A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Convenient%20All-Cell%20Optical%20Imaging%20Method%20Compatible%20with%20Serial%20SEM%20for%20Brain%20Mapping&rft.jtitle=Brain%20sciences&rft.au=Wang,%20Tianyi&rft.date=2023-04-24&rft.volume=13&rft.issue=5&rft.spage=711&rft.pages=711-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci13050711&rft_dat=%3Cgale_doaj_%3EA752359457%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819357194&rft_id=info:pmid/37239183&rft_galeid=A752359457&rfr_iscdi=true |