Loading…

A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping

The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell b...

Full description

Saved in:
Bibliographic Details
Published in:Brain sciences 2023-04, Vol.13 (5), p.711
Main Authors: Wang, Tianyi, Shi, Peiyao, Luo, Dingsan, Guo, Jun, Liu, Hui, Yuan, Jinyun, Jin, Haiqun, Wu, Xiaolong, Zhang, Yueyi, Xiong, Zhiwei, Zhu, Jinlong, Zhou, Renjie, Zhang, Ruobing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3
container_end_page
container_issue 5
container_start_page 711
container_title Brain sciences
container_volume 13
creator Wang, Tianyi
Shi, Peiyao
Luo, Dingsan
Guo, Jun
Liu, Hui
Yuan, Jinyun
Jin, Haiqun
Wu, Xiaolong
Zhang, Yueyi
Xiong, Zhiwei
Zhu, Jinlong
Zhou, Renjie
Zhang, Ruobing
description The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.
doi_str_mv 10.3390/brainsci13050711
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f1769685e48d45dda0545b9403e8ab2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752359457</galeid><doaj_id>oai_doaj_org_article_f1769685e48d45dda0545b9403e8ab2a</doaj_id><sourcerecordid>A752359457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpnROyxIVLij-T-ISWVYGVuuqhcOBkTfyR9Sqxg5Ntxb_Hy5Zqt8I-eDR-3tee0RTFW4KvGJP4Y5vAh0l7wrDANSEvinOK66pknIqXR_FZcTlNW5xXgzET-HVxxmrKJGnYefFzgZYx3NvgbZjRou_Lpe17dDvOXkOPVgN0PnRobedNNBkdRph921v04OcNurPJZ-rueo1cTOjz_kdoDeOYNW-KVw76yV4-nhfFjy_X35ffypvbr6vl4qbUgpC5BFE54oxxsmINrrjRrAYHzlCaY6JJy3TjsGsYqYAzozHouiGcaclczTW7KFYHXxNhq8bkB0i_VQSv_iZi6hSkXE1vlSN1JatGWN4YLowBLLhoJcfMNtBSyF6fDl7jrh2s0bknCfoT09Ob4Deqi_eKYEoqIXF2-PDokOKvnZ1mNfhJ55ZCsHE3KdpQjElFOc_o-2foNu5SyL3KFJFM1EQeUR3kCnxwMT-s96ZqUQvKhOSiztTVf6i8jR28jsE6n_MnAnwQ6BSnKVn3VCTBaj9e6vl4Zcm74-Y8Cf4NE_sDUXPKFg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819357194</pqid></control><display><type>article</type><title>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Tianyi ; Shi, Peiyao ; Luo, Dingsan ; Guo, Jun ; Liu, Hui ; Yuan, Jinyun ; Jin, Haiqun ; Wu, Xiaolong ; Zhang, Yueyi ; Xiong, Zhiwei ; Zhu, Jinlong ; Zhou, Renjie ; Zhang, Ruobing</creator><creatorcontrib>Wang, Tianyi ; Shi, Peiyao ; Luo, Dingsan ; Guo, Jun ; Liu, Hui ; Yuan, Jinyun ; Jin, Haiqun ; Wu, Xiaolong ; Zhang, Yueyi ; Xiong, Zhiwei ; Zhu, Jinlong ; Zhou, Renjie ; Zhang, Ruobing</creatorcontrib><description>The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.</description><identifier>ISSN: 2076-3425</identifier><identifier>EISSN: 2076-3425</identifier><identifier>DOI: 10.3390/brainsci13050711</identifier><identifier>PMID: 37239183</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Automation ; Brain mapping ; Carbon ; cell classification ; Coatings ; Contamination ; correlative light and electron microscopy ; Costs ; Electron microscopes ; Electron microscopy ; Localization ; Mapping ; Methods ; Neural networks ; Neuroimaging ; Neurons ; Neurophysiology ; optical multilayer interference tomography ; Protective coatings ; Scanning electron microscopy ; Silicon wafers ; Structure-function relationships ; Tomography</subject><ispartof>Brain sciences, 2023-04, Vol.13 (5), p.711</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819357194/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819357194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37239183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Shi, Peiyao</creatorcontrib><creatorcontrib>Luo, Dingsan</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Yuan, Jinyun</creatorcontrib><creatorcontrib>Jin, Haiqun</creatorcontrib><creatorcontrib>Wu, Xiaolong</creatorcontrib><creatorcontrib>Zhang, Yueyi</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Zhou, Renjie</creatorcontrib><creatorcontrib>Zhang, Ruobing</creatorcontrib><title>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</title><title>Brain sciences</title><addtitle>Brain Sci</addtitle><description>The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.</description><subject>Automation</subject><subject>Brain mapping</subject><subject>Carbon</subject><subject>cell classification</subject><subject>Coatings</subject><subject>Contamination</subject><subject>correlative light and electron microscopy</subject><subject>Costs</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Localization</subject><subject>Mapping</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>optical multilayer interference tomography</subject><subject>Protective coatings</subject><subject>Scanning electron microscopy</subject><subject>Silicon wafers</subject><subject>Structure-function relationships</subject><subject>Tomography</subject><issn>2076-3425</issn><issn>2076-3425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiMEolXpnROyxIVLij-T-ISWVYGVuuqhcOBkTfyR9Sqxg5Ntxb_Hy5Zqt8I-eDR-3tee0RTFW4KvGJP4Y5vAh0l7wrDANSEvinOK66pknIqXR_FZcTlNW5xXgzET-HVxxmrKJGnYefFzgZYx3NvgbZjRou_Lpe17dDvOXkOPVgN0PnRobedNNBkdRph921v04OcNurPJZ-rueo1cTOjz_kdoDeOYNW-KVw76yV4-nhfFjy_X35ffypvbr6vl4qbUgpC5BFE54oxxsmINrrjRrAYHzlCaY6JJy3TjsGsYqYAzozHouiGcaclczTW7KFYHXxNhq8bkB0i_VQSv_iZi6hSkXE1vlSN1JatGWN4YLowBLLhoJcfMNtBSyF6fDl7jrh2s0bknCfoT09Ob4Deqi_eKYEoqIXF2-PDokOKvnZ1mNfhJ55ZCsHE3KdpQjElFOc_o-2foNu5SyL3KFJFM1EQeUR3kCnxwMT-s96ZqUQvKhOSiztTVf6i8jR28jsE6n_MnAnwQ6BSnKVn3VCTBaj9e6vl4Zcm74-Y8Cf4NE_sDUXPKFg</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Wang, Tianyi</creator><creator>Shi, Peiyao</creator><creator>Luo, Dingsan</creator><creator>Guo, Jun</creator><creator>Liu, Hui</creator><creator>Yuan, Jinyun</creator><creator>Jin, Haiqun</creator><creator>Wu, Xiaolong</creator><creator>Zhang, Yueyi</creator><creator>Xiong, Zhiwei</creator><creator>Zhu, Jinlong</creator><creator>Zhou, Renjie</creator><creator>Zhang, Ruobing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230424</creationdate><title>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</title><author>Wang, Tianyi ; Shi, Peiyao ; Luo, Dingsan ; Guo, Jun ; Liu, Hui ; Yuan, Jinyun ; Jin, Haiqun ; Wu, Xiaolong ; Zhang, Yueyi ; Xiong, Zhiwei ; Zhu, Jinlong ; Zhou, Renjie ; Zhang, Ruobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Brain mapping</topic><topic>Carbon</topic><topic>cell classification</topic><topic>Coatings</topic><topic>Contamination</topic><topic>correlative light and electron microscopy</topic><topic>Costs</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Localization</topic><topic>Mapping</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>optical multilayer interference tomography</topic><topic>Protective coatings</topic><topic>Scanning electron microscopy</topic><topic>Silicon wafers</topic><topic>Structure-function relationships</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Shi, Peiyao</creatorcontrib><creatorcontrib>Luo, Dingsan</creatorcontrib><creatorcontrib>Guo, Jun</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Yuan, Jinyun</creatorcontrib><creatorcontrib>Jin, Haiqun</creatorcontrib><creatorcontrib>Wu, Xiaolong</creatorcontrib><creatorcontrib>Zhang, Yueyi</creatorcontrib><creatorcontrib>Xiong, Zhiwei</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Zhou, Renjie</creatorcontrib><creatorcontrib>Zhang, Ruobing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tianyi</au><au>Shi, Peiyao</au><au>Luo, Dingsan</au><au>Guo, Jun</au><au>Liu, Hui</au><au>Yuan, Jinyun</au><au>Jin, Haiqun</au><au>Wu, Xiaolong</au><au>Zhang, Yueyi</au><au>Xiong, Zhiwei</au><au>Zhu, Jinlong</au><au>Zhou, Renjie</au><au>Zhang, Ruobing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping</atitle><jtitle>Brain sciences</jtitle><addtitle>Brain Sci</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>711</spage><pages>711-</pages><issn>2076-3425</issn><eissn>2076-3425</eissn><abstract>The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37239183</pmid><doi>10.3390/brainsci13050711</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3425
ispartof Brain sciences, 2023-04, Vol.13 (5), p.711
issn 2076-3425
2076-3425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f1769685e48d45dda0545b9403e8ab2a
source Publicly Available Content Database; PubMed Central
subjects Automation
Brain mapping
Carbon
cell classification
Coatings
Contamination
correlative light and electron microscopy
Costs
Electron microscopes
Electron microscopy
Localization
Mapping
Methods
Neural networks
Neuroimaging
Neurons
Neurophysiology
optical multilayer interference tomography
Protective coatings
Scanning electron microscopy
Silicon wafers
Structure-function relationships
Tomography
title A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Convenient%20All-Cell%20Optical%20Imaging%20Method%20Compatible%20with%20Serial%20SEM%20for%20Brain%20Mapping&rft.jtitle=Brain%20sciences&rft.au=Wang,%20Tianyi&rft.date=2023-04-24&rft.volume=13&rft.issue=5&rft.spage=711&rft.pages=711-&rft.issn=2076-3425&rft.eissn=2076-3425&rft_id=info:doi/10.3390/brainsci13050711&rft_dat=%3Cgale_doaj_%3EA752359457%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-a56f1fddf9638064dc37afafd224dc1c1b3c8f0f8316a43dc0ac78143c93f74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819357194&rft_id=info:pmid/37239183&rft_galeid=A752359457&rfr_iscdi=true