Loading…

Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System

This work provides an enhanced novel cascaded controller-based frequency stabilization of a two-region interconnected power system incorporating electric vehicles. The proposed controller combines a cascade structure comprising a fractional-order proportional integrator and a proportional derivative...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional 2023-04, Vol.7 (4), p.315
Main Authors: Zhang, Guoqiang, Daraz, Amil, Khan, Irfan Ahmed, Basit, Abdul, Khan, Muhammad Irshad, Ullah, Mirzat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-39c2786ddfbbc8f4715e2e8a2f25f5cf10eebc6e692b2f641cae237fcfdbe4e13
cites cdi_FETCH-LOGICAL-c427t-39c2786ddfbbc8f4715e2e8a2f25f5cf10eebc6e692b2f641cae237fcfdbe4e13
container_end_page
container_issue 4
container_start_page 315
container_title Fractal and fractional
container_volume 7
creator Zhang, Guoqiang
Daraz, Amil
Khan, Irfan Ahmed
Basit, Abdul
Khan, Muhammad Irshad
Ullah, Mirzat
description This work provides an enhanced novel cascaded controller-based frequency stabilization of a two-region interconnected power system incorporating electric vehicles. The proposed controller combines a cascade structure comprising a fractional-order proportional integrator and a proportional derivative with a filter term to handle the frequency regulation challenges of a hybrid power system integrated with renewable energy sources. Driver training-based optimization, an advanced stochastic meta-heuristic method based on human learning, is employed to optimize the gains of the proposed cascaded controller. The performance of the proposed novel controller was compared to that of other control methods. In addition, the results of driver training-based optimization are compared to those of other recent meta-heuristic algorithms, such as the imperialist competitive algorithm and jellyfish swarm optimization. The suggested controller and design technique have been evaluated and validated under a variety of loading circumstances and scenarios, as well as their resistance to power system parameter uncertainties. The results indicate the new controller’s steady operation and frequency regulation capability with an optimal controller coefficient and without the prerequisite for a complex layout procedure.
doi_str_mv 10.3390/fractalfract7040315
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f17c31b7dbd14485a29ef07fa39884db</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752116387</galeid><doaj_id>oai_doaj_org_article_f17c31b7dbd14485a29ef07fa39884db</doaj_id><sourcerecordid>A752116387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-39c2786ddfbbc8f4715e2e8a2f25f5cf10eebc6e692b2f641cae237fcfdbe4e13</originalsourceid><addsrcrecordid>eNptkUtrGzEUhYfSQkOSX9CNoOtJ9RzNLFO7bgwBG5KuhR5XRmY8ciWlxYH898qZULooWtzL4ZxP0r1N84ngG8YG_MUnbYseX4vEHDMi3jUXVGDeMkLw-3_6j811znuMMZUDE1heNC_LFH5BQo9JhylMO_RVZ3BocyzhEJ5rtzpjQ5z0iDbJVed23W6XK7SIU0lxHKviY6o2-PkEkz2hh6JNGMOzPqdQ9Gh5viADujuZFBzaxt8183DKBQ5XzQevxwzXb_Wy-bH69ri4a-8339eL2_vWcipLywZLZd85542xveeSCKDQa-qp8MJ6ggGM7aAbqKG-48RqoEx6650BDoRdNuuZ66Leq2MKB51OKuqgXoWYdkqnEuwIyhNpGTHSGUc474WmA3gsvWZD33NnKuvzzDqmWL-ci9rHp1TnkxXtcSfIwHpZXTeza6crNEw-ljrIehwcgo0T-FD1WykoId0cYHPApphzAv_3mQSr857Vf_bM_gB-c6Bw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806519387</pqid></control><display><type>article</type><title>Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Guoqiang ; Daraz, Amil ; Khan, Irfan Ahmed ; Basit, Abdul ; Khan, Muhammad Irshad ; Ullah, Mirzat</creator><creatorcontrib>Zhang, Guoqiang ; Daraz, Amil ; Khan, Irfan Ahmed ; Basit, Abdul ; Khan, Muhammad Irshad ; Ullah, Mirzat</creatorcontrib><description>This work provides an enhanced novel cascaded controller-based frequency stabilization of a two-region interconnected power system incorporating electric vehicles. The proposed controller combines a cascade structure comprising a fractional-order proportional integrator and a proportional derivative with a filter term to handle the frequency regulation challenges of a hybrid power system integrated with renewable energy sources. Driver training-based optimization, an advanced stochastic meta-heuristic method based on human learning, is employed to optimize the gains of the proposed cascaded controller. The performance of the proposed novel controller was compared to that of other control methods. In addition, the results of driver training-based optimization are compared to those of other recent meta-heuristic algorithms, such as the imperialist competitive algorithm and jellyfish swarm optimization. The suggested controller and design technique have been evaluated and validated under a variety of loading circumstances and scenarios, as well as their resistance to power system parameter uncertainties. The results indicate the new controller’s steady operation and frequency regulation capability with an optimal controller coefficient and without the prerequisite for a complex layout procedure.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract7040315</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alternative energy sources ; Automobiles, Electric ; Comparative analysis ; Control methods ; Control systems design ; Controllers ; Design optimization ; Driver education ; Electric power systems ; Electric rates ; Electric vehicles ; Electricity ; Electricity distribution ; Energy industry ; Energy storage ; Evolutionary algorithms ; fractional order controller ; Frequency stabilization ; Heuristic methods ; heuristic techniques ; Hybrid systems ; Imperialism ; load frequency control ; Mathematical optimization ; Optimization techniques ; Parameter uncertainty ; power system ; Proportional derivative ; renewable energy resources ; Renewable energy sources ; Renewable resources ; Training ; Wind power</subject><ispartof>Fractal and fractional, 2023-04, Vol.7 (4), p.315</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-39c2786ddfbbc8f4715e2e8a2f25f5cf10eebc6e692b2f641cae237fcfdbe4e13</citedby><cites>FETCH-LOGICAL-c427t-39c2786ddfbbc8f4715e2e8a2f25f5cf10eebc6e692b2f641cae237fcfdbe4e13</cites><orcidid>0000-0002-1318-4203 ; 0000-0002-5532-9175 ; 0000-0002-1872-2197 ; 0000-0003-1517-0611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806519387/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806519387?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Daraz, Amil</creatorcontrib><creatorcontrib>Khan, Irfan Ahmed</creatorcontrib><creatorcontrib>Basit, Abdul</creatorcontrib><creatorcontrib>Khan, Muhammad Irshad</creatorcontrib><creatorcontrib>Ullah, Mirzat</creatorcontrib><title>Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System</title><title>Fractal and fractional</title><description>This work provides an enhanced novel cascaded controller-based frequency stabilization of a two-region interconnected power system incorporating electric vehicles. The proposed controller combines a cascade structure comprising a fractional-order proportional integrator and a proportional derivative with a filter term to handle the frequency regulation challenges of a hybrid power system integrated with renewable energy sources. Driver training-based optimization, an advanced stochastic meta-heuristic method based on human learning, is employed to optimize the gains of the proposed cascaded controller. The performance of the proposed novel controller was compared to that of other control methods. In addition, the results of driver training-based optimization are compared to those of other recent meta-heuristic algorithms, such as the imperialist competitive algorithm and jellyfish swarm optimization. The suggested controller and design technique have been evaluated and validated under a variety of loading circumstances and scenarios, as well as their resistance to power system parameter uncertainties. The results indicate the new controller’s steady operation and frequency regulation capability with an optimal controller coefficient and without the prerequisite for a complex layout procedure.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Automobiles, Electric</subject><subject>Comparative analysis</subject><subject>Control methods</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design optimization</subject><subject>Driver education</subject><subject>Electric power systems</subject><subject>Electric rates</subject><subject>Electric vehicles</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy industry</subject><subject>Energy storage</subject><subject>Evolutionary algorithms</subject><subject>fractional order controller</subject><subject>Frequency stabilization</subject><subject>Heuristic methods</subject><subject>heuristic techniques</subject><subject>Hybrid systems</subject><subject>Imperialism</subject><subject>load frequency control</subject><subject>Mathematical optimization</subject><subject>Optimization techniques</subject><subject>Parameter uncertainty</subject><subject>power system</subject><subject>Proportional derivative</subject><subject>renewable energy resources</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Training</subject><subject>Wind power</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkUtrGzEUhYfSQkOSX9CNoOtJ9RzNLFO7bgwBG5KuhR5XRmY8ciWlxYH898qZULooWtzL4ZxP0r1N84ngG8YG_MUnbYseX4vEHDMi3jUXVGDeMkLw-3_6j811znuMMZUDE1heNC_LFH5BQo9JhylMO_RVZ3BocyzhEJ5rtzpjQ5z0iDbJVed23W6XK7SIU0lxHKviY6o2-PkEkz2hh6JNGMOzPqdQ9Gh5viADujuZFBzaxt8183DKBQ5XzQevxwzXb_Wy-bH69ri4a-8339eL2_vWcipLywZLZd85542xveeSCKDQa-qp8MJ6ggGM7aAbqKG-48RqoEx6650BDoRdNuuZ66Leq2MKB51OKuqgXoWYdkqnEuwIyhNpGTHSGUc474WmA3gsvWZD33NnKuvzzDqmWL-ci9rHp1TnkxXtcSfIwHpZXTeza6crNEw-ljrIehwcgo0T-FD1WykoId0cYHPApphzAv_3mQSr857Vf_bM_gB-c6Bw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Guoqiang</creator><creator>Daraz, Amil</creator><creator>Khan, Irfan Ahmed</creator><creator>Basit, Abdul</creator><creator>Khan, Muhammad Irshad</creator><creator>Ullah, Mirzat</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1318-4203</orcidid><orcidid>https://orcid.org/0000-0002-5532-9175</orcidid><orcidid>https://orcid.org/0000-0002-1872-2197</orcidid><orcidid>https://orcid.org/0000-0003-1517-0611</orcidid></search><sort><creationdate>20230401</creationdate><title>Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System</title><author>Zhang, Guoqiang ; Daraz, Amil ; Khan, Irfan Ahmed ; Basit, Abdul ; Khan, Muhammad Irshad ; Ullah, Mirzat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-39c2786ddfbbc8f4715e2e8a2f25f5cf10eebc6e692b2f641cae237fcfdbe4e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Automobiles, Electric</topic><topic>Comparative analysis</topic><topic>Control methods</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design optimization</topic><topic>Driver education</topic><topic>Electric power systems</topic><topic>Electric rates</topic><topic>Electric vehicles</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy industry</topic><topic>Energy storage</topic><topic>Evolutionary algorithms</topic><topic>fractional order controller</topic><topic>Frequency stabilization</topic><topic>Heuristic methods</topic><topic>heuristic techniques</topic><topic>Hybrid systems</topic><topic>Imperialism</topic><topic>load frequency control</topic><topic>Mathematical optimization</topic><topic>Optimization techniques</topic><topic>Parameter uncertainty</topic><topic>power system</topic><topic>Proportional derivative</topic><topic>renewable energy resources</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Training</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Daraz, Amil</creatorcontrib><creatorcontrib>Khan, Irfan Ahmed</creatorcontrib><creatorcontrib>Basit, Abdul</creatorcontrib><creatorcontrib>Khan, Muhammad Irshad</creatorcontrib><creatorcontrib>Ullah, Mirzat</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guoqiang</au><au>Daraz, Amil</au><au>Khan, Irfan Ahmed</au><au>Basit, Abdul</au><au>Khan, Muhammad Irshad</au><au>Ullah, Mirzat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System</atitle><jtitle>Fractal and fractional</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>7</volume><issue>4</issue><spage>315</spage><pages>315-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>This work provides an enhanced novel cascaded controller-based frequency stabilization of a two-region interconnected power system incorporating electric vehicles. The proposed controller combines a cascade structure comprising a fractional-order proportional integrator and a proportional derivative with a filter term to handle the frequency regulation challenges of a hybrid power system integrated with renewable energy sources. Driver training-based optimization, an advanced stochastic meta-heuristic method based on human learning, is employed to optimize the gains of the proposed cascaded controller. The performance of the proposed novel controller was compared to that of other control methods. In addition, the results of driver training-based optimization are compared to those of other recent meta-heuristic algorithms, such as the imperialist competitive algorithm and jellyfish swarm optimization. The suggested controller and design technique have been evaluated and validated under a variety of loading circumstances and scenarios, as well as their resistance to power system parameter uncertainties. The results indicate the new controller’s steady operation and frequency regulation capability with an optimal controller coefficient and without the prerequisite for a complex layout procedure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract7040315</doi><orcidid>https://orcid.org/0000-0002-1318-4203</orcidid><orcidid>https://orcid.org/0000-0002-5532-9175</orcidid><orcidid>https://orcid.org/0000-0002-1872-2197</orcidid><orcidid>https://orcid.org/0000-0003-1517-0611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-3110
ispartof Fractal and fractional, 2023-04, Vol.7 (4), p.315
issn 2504-3110
2504-3110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f17c31b7dbd14485a29ef07fa39884db
source Publicly Available Content (ProQuest)
subjects Algorithms
Alternative energy sources
Automobiles, Electric
Comparative analysis
Control methods
Control systems design
Controllers
Design optimization
Driver education
Electric power systems
Electric rates
Electric vehicles
Electricity
Electricity distribution
Energy industry
Energy storage
Evolutionary algorithms
fractional order controller
Frequency stabilization
Heuristic methods
heuristic techniques
Hybrid systems
Imperialism
load frequency control
Mathematical optimization
Optimization techniques
Parameter uncertainty
power system
Proportional derivative
renewable energy resources
Renewable energy sources
Renewable resources
Training
Wind power
title Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driver%20Training%20Based%20Optimized%20Fractional%20Order%20PI-PDF%20Controller%20for%20Frequency%20Stabilization%20of%20Diverse%20Hybrid%20Power%20System&rft.jtitle=Fractal%20and%20fractional&rft.au=Zhang,%20Guoqiang&rft.date=2023-04-01&rft.volume=7&rft.issue=4&rft.spage=315&rft.pages=315-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract7040315&rft_dat=%3Cgale_doaj_%3EA752116387%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-39c2786ddfbbc8f4715e2e8a2f25f5cf10eebc6e692b2f641cae237fcfdbe4e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806519387&rft_id=info:pmid/&rft_galeid=A752116387&rfr_iscdi=true