Loading…
Properties of Sulfur Particles Formed in Biodesulfurization of Biogas
In the biodesulfurization (BD) process under halo-alkaline conditions, toxic hydrogen sulfide is oxidized to elemental sulfur by a mixed culture of sulfide oxidizing bacteria to clean biogas. The resulting sulfur is recovered by gravitational settling and can be used as raw material in various indus...
Saved in:
Published in: | Minerals (Basel) 2020-05, Vol.10 (5), p.433 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the biodesulfurization (BD) process under halo-alkaline conditions, toxic hydrogen sulfide is oxidized to elemental sulfur by a mixed culture of sulfide oxidizing bacteria to clean biogas. The resulting sulfur is recovered by gravitational settling and can be used as raw material in various industries. However, if the sulfur particles do not settle, it will lead to operational difficulties. In this study, we investigated the properties of sulfur formed in five industrial BD facilities. Sulfur particles from all samples showed large differences in terms of shape, size, and settleability. Both single crystals (often bipyramidal) and aggregates thereof were observed with light and scanning electron microscopy. The small, non-settled particles account for at least 13.6% of the total number of particles and consists of small individual particles with a median of 0.3 µm. This is undesirable, because those particles cannot be removed from the BD facility by gravitational settling and lead to operational interruption. The particles with good settling properties are aggregates (5–20 µm) or large single crystals (20 µm). We provide hypotheses as to how the differences in sulfur particle properties might have occurred. These findings provide a basis for understanding the relation between sulfur particle properties and formation mechanisms. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min10050433 |