Loading…

Properties of Sulfur Particles Formed in Biodesulfurization of Biogas

In the biodesulfurization (BD) process under halo-alkaline conditions, toxic hydrogen sulfide is oxidized to elemental sulfur by a mixed culture of sulfide oxidizing bacteria to clean biogas. The resulting sulfur is recovered by gravitational settling and can be used as raw material in various indus...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2020-05, Vol.10 (5), p.433
Main Authors: Mol, Annemerel, van der Weijden, Renata, Klok, Johannes, Buisman, Cees
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the biodesulfurization (BD) process under halo-alkaline conditions, toxic hydrogen sulfide is oxidized to elemental sulfur by a mixed culture of sulfide oxidizing bacteria to clean biogas. The resulting sulfur is recovered by gravitational settling and can be used as raw material in various industries. However, if the sulfur particles do not settle, it will lead to operational difficulties. In this study, we investigated the properties of sulfur formed in five industrial BD facilities. Sulfur particles from all samples showed large differences in terms of shape, size, and settleability. Both single crystals (often bipyramidal) and aggregates thereof were observed with light and scanning electron microscopy. The small, non-settled particles account for at least 13.6% of the total number of particles and consists of small individual particles with a median of 0.3 µm. This is undesirable, because those particles cannot be removed from the BD facility by gravitational settling and lead to operational interruption. The particles with good settling properties are aggregates (5–20 µm) or large single crystals (20 µm). We provide hypotheses as to how the differences in sulfur particle properties might have occurred. These findings provide a basis for understanding the relation between sulfur particle properties and formation mechanisms.
ISSN:2075-163X
2075-163X
DOI:10.3390/min10050433