Loading…
High density lithium niobate photonic integrated circuits
Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here...
Saved in:
Published in: | Nature communications 2023-08, Vol.14 (1), p.4856-4856, Article 4856 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3 |
container_end_page | 4856 |
container_issue | 1 |
container_start_page | 4856 |
container_title | Nature communications |
container_volume | 14 |
creator | Li, Zihan Wang, Rui Ning Lihachev, Grigory Zhang, Junyin Tan, Zelin Churaev, Mikhail Kuznetsov, Nikolai Siddharth, Anat Bereyhi, Mohammad J. Riemensberger, Johann Kippenberg, Tobias J. |
description | Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO
3
. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO
3
based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask. |
doi_str_mv | 10.1038/s41467-023-40502-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f18360736bff44a2985f0f82255ad165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f18360736bff44a2985f0f82255ad165</doaj_id><sourcerecordid>2848616734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</originalsourceid><addsrcrecordid>eNp9kUFvFSEQxzdGY5vaL-DBbOLFy-oAA8uejGnUNmniRc-EBXYfL_vgCaxJv720W2vrQS7AzH9-M_BvmtcE3hNg8kNGgqLvgLIOgQPt5LPmlAKSjvSUPX90PmnOc95DXWwgEvFlc8J6LhjB4bQZLv28a60L2ZebdvFl59dDG3wcdXHtcRdLDN60PhQ3pxqyrfHJrL7kV82LSS_Znd_vZ82PL5-_X1x219--Xl18uu4MR1K60XEhtTUDqXfjegnUcjlqBoO0UmtAJi1nRDKJPQFB6ly9GbWTEgcEzc6aq41ro96rY_IHnW5U1F7dBWKalU7Fm8WpqVIE9EyM04So6SD5BJOklHNtieCV9XFjHdfx4KxxoSS9PIE-zQS_U3P8pUj9TM6AVMK7e0KKP1eXizr4bNyy6ODimhWVHBigwNtmb_-R7uOaQv2rqkIpiOgZVhXdVCbFnJObHqYhoG6dVpvTqjqt7pxWsha9efyOh5I_vlYB2wS5psLs0t_e_8H-Bhk2saw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848616734</pqid></control><display><type>article</type><title>High density lithium niobate photonic integrated circuits</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Zihan ; Wang, Rui Ning ; Lihachev, Grigory ; Zhang, Junyin ; Tan, Zelin ; Churaev, Mikhail ; Kuznetsov, Nikolai ; Siddharth, Anat ; Bereyhi, Mohammad J. ; Riemensberger, Johann ; Kippenberg, Tobias J.</creator><creatorcontrib>Li, Zihan ; Wang, Rui Ning ; Lihachev, Grigory ; Zhang, Junyin ; Tan, Zelin ; Churaev, Mikhail ; Kuznetsov, Nikolai ; Siddharth, Anat ; Bereyhi, Mohammad J. ; Riemensberger, Johann ; Kippenberg, Tobias J.</creatorcontrib><description>Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO
3
. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO
3
based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40502-8</identifier><identifier>PMID: 37563149</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/1111/1113 ; Carbon ; Confining ; Density ; Diamond-like carbon ; Electric potential ; Etching ; Fabrication ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Humanities and Social Sciences ; Integrated circuits ; Light modulation ; Lithium ; Lithium niobates ; multidisciplinary ; Optical fibers ; Optics ; Photonics ; Science ; Science (multidisciplinary) ; Voltage ; Waveguides</subject><ispartof>Nature communications, 2023-08, Vol.14 (1), p.4856-4856, Article 4856</ispartof><rights>The Author(s) 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</citedby><cites>FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</cites><orcidid>0000-0002-1864-3288 ; 0000-0003-4066-7304 ; 0000-0002-5704-3971 ; 0000-0002-7685-4868 ; 0000-0001-7597-8941 ; 0000-0002-3408-886X ; 0000-0002-3468-6501 ; 0000-0002-5609-5331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848616734/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848616734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37563149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Zhang, Junyin</creatorcontrib><creatorcontrib>Tan, Zelin</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Kuznetsov, Nikolai</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Bereyhi, Mohammad J.</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><title>High density lithium niobate photonic integrated circuits</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO
3
. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO
3
based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.</description><subject>639/624/1075/1079</subject><subject>639/624/1111/1113</subject><subject>Carbon</subject><subject>Confining</subject><subject>Density</subject><subject>Diamond-like carbon</subject><subject>Electric potential</subject><subject>Etching</subject><subject>Fabrication</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Humanities and Social Sciences</subject><subject>Integrated circuits</subject><subject>Light modulation</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>multidisciplinary</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Photonics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Voltage</subject><subject>Waveguides</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFvFSEQxzdGY5vaL-DBbOLFy-oAA8uejGnUNmniRc-EBXYfL_vgCaxJv720W2vrQS7AzH9-M_BvmtcE3hNg8kNGgqLvgLIOgQPt5LPmlAKSjvSUPX90PmnOc95DXWwgEvFlc8J6LhjB4bQZLv28a60L2ZebdvFl59dDG3wcdXHtcRdLDN60PhQ3pxqyrfHJrL7kV82LSS_Znd_vZ82PL5-_X1x219--Xl18uu4MR1K60XEhtTUDqXfjegnUcjlqBoO0UmtAJi1nRDKJPQFB6ly9GbWTEgcEzc6aq41ro96rY_IHnW5U1F7dBWKalU7Fm8WpqVIE9EyM04So6SD5BJOklHNtieCV9XFjHdfx4KxxoSS9PIE-zQS_U3P8pUj9TM6AVMK7e0KKP1eXizr4bNyy6ODimhWVHBigwNtmb_-R7uOaQv2rqkIpiOgZVhXdVCbFnJObHqYhoG6dVpvTqjqt7pxWsha9efyOh5I_vlYB2wS5psLs0t_e_8H-Bhk2saw</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Li, Zihan</creator><creator>Wang, Rui Ning</creator><creator>Lihachev, Grigory</creator><creator>Zhang, Junyin</creator><creator>Tan, Zelin</creator><creator>Churaev, Mikhail</creator><creator>Kuznetsov, Nikolai</creator><creator>Siddharth, Anat</creator><creator>Bereyhi, Mohammad J.</creator><creator>Riemensberger, Johann</creator><creator>Kippenberg, Tobias J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1864-3288</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid><orcidid>https://orcid.org/0000-0002-7685-4868</orcidid><orcidid>https://orcid.org/0000-0001-7597-8941</orcidid><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-5609-5331</orcidid></search><sort><creationdate>20230810</creationdate><title>High density lithium niobate photonic integrated circuits</title><author>Li, Zihan ; Wang, Rui Ning ; Lihachev, Grigory ; Zhang, Junyin ; Tan, Zelin ; Churaev, Mikhail ; Kuznetsov, Nikolai ; Siddharth, Anat ; Bereyhi, Mohammad J. ; Riemensberger, Johann ; Kippenberg, Tobias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/1079</topic><topic>639/624/1111/1113</topic><topic>Carbon</topic><topic>Confining</topic><topic>Density</topic><topic>Diamond-like carbon</topic><topic>Electric potential</topic><topic>Etching</topic><topic>Fabrication</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Humanities and Social Sciences</topic><topic>Integrated circuits</topic><topic>Light modulation</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>multidisciplinary</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Photonics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Voltage</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Zhang, Junyin</creatorcontrib><creatorcontrib>Tan, Zelin</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Kuznetsov, Nikolai</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Bereyhi, Mohammad J.</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zihan</au><au>Wang, Rui Ning</au><au>Lihachev, Grigory</au><au>Zhang, Junyin</au><au>Tan, Zelin</au><au>Churaev, Mikhail</au><au>Kuznetsov, Nikolai</au><au>Siddharth, Anat</au><au>Bereyhi, Mohammad J.</au><au>Riemensberger, Johann</au><au>Kippenberg, Tobias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High density lithium niobate photonic integrated circuits</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4856</spage><epage>4856</epage><pages>4856-4856</pages><artnum>4856</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO
3
. Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO
3
based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V.
Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37563149</pmid><doi>10.1038/s41467-023-40502-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1864-3288</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid><orcidid>https://orcid.org/0000-0002-7685-4868</orcidid><orcidid>https://orcid.org/0000-0001-7597-8941</orcidid><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-5609-5331</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-08, Vol.14 (1), p.4856-4856, Article 4856 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f18360736bff44a2985f0f82255ad165 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1075/1079 639/624/1111/1113 Carbon Confining Density Diamond-like carbon Electric potential Etching Fabrication Ferroelectric materials Ferroelectricity Ferroelectrics Humanities and Social Sciences Integrated circuits Light modulation Lithium Lithium niobates multidisciplinary Optical fibers Optics Photonics Science Science (multidisciplinary) Voltage Waveguides |
title | High density lithium niobate photonic integrated circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20density%20lithium%20niobate%20photonic%20integrated%20circuits&rft.jtitle=Nature%20communications&rft.au=Li,%20Zihan&rft.date=2023-08-10&rft.volume=14&rft.issue=1&rft.spage=4856&rft.epage=4856&rft.pages=4856-4856&rft.artnum=4856&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40502-8&rft_dat=%3Cproquest_doaj_%3E2848616734%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848616734&rft_id=info:pmid/37563149&rfr_iscdi=true |