Loading…

High density lithium niobate photonic integrated circuits

Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-08, Vol.14 (1), p.4856-4856, Article 4856
Main Authors: Li, Zihan, Wang, Rui Ning, Lihachev, Grigory, Zhang, Junyin, Tan, Zelin, Churaev, Mikhail, Kuznetsov, Nikolai, Siddharth, Anat, Bereyhi, Mohammad J., Riemensberger, Johann, Kippenberg, Tobias J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3
cites cdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3
container_end_page 4856
container_issue 1
container_start_page 4856
container_title Nature communications
container_volume 14
creator Li, Zihan
Wang, Rui Ning
Lihachev, Grigory
Zhang, Junyin
Tan, Zelin
Churaev, Mikhail
Kuznetsov, Nikolai
Siddharth, Anat
Bereyhi, Mohammad J.
Riemensberger, Johann
Kippenberg, Tobias J.
description Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.
doi_str_mv 10.1038/s41467-023-40502-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f18360736bff44a2985f0f82255ad165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f18360736bff44a2985f0f82255ad165</doaj_id><sourcerecordid>2848616734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</originalsourceid><addsrcrecordid>eNp9kUFvFSEQxzdGY5vaL-DBbOLFy-oAA8uejGnUNmniRc-EBXYfL_vgCaxJv720W2vrQS7AzH9-M_BvmtcE3hNg8kNGgqLvgLIOgQPt5LPmlAKSjvSUPX90PmnOc95DXWwgEvFlc8J6LhjB4bQZLv28a60L2ZebdvFl59dDG3wcdXHtcRdLDN60PhQ3pxqyrfHJrL7kV82LSS_Znd_vZ82PL5-_X1x219--Xl18uu4MR1K60XEhtTUDqXfjegnUcjlqBoO0UmtAJi1nRDKJPQFB6ly9GbWTEgcEzc6aq41ro96rY_IHnW5U1F7dBWKalU7Fm8WpqVIE9EyM04So6SD5BJOklHNtieCV9XFjHdfx4KxxoSS9PIE-zQS_U3P8pUj9TM6AVMK7e0KKP1eXizr4bNyy6ODimhWVHBigwNtmb_-R7uOaQv2rqkIpiOgZVhXdVCbFnJObHqYhoG6dVpvTqjqt7pxWsha9efyOh5I_vlYB2wS5psLs0t_e_8H-Bhk2saw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848616734</pqid></control><display><type>article</type><title>High density lithium niobate photonic integrated circuits</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Zihan ; Wang, Rui Ning ; Lihachev, Grigory ; Zhang, Junyin ; Tan, Zelin ; Churaev, Mikhail ; Kuznetsov, Nikolai ; Siddharth, Anat ; Bereyhi, Mohammad J. ; Riemensberger, Johann ; Kippenberg, Tobias J.</creator><creatorcontrib>Li, Zihan ; Wang, Rui Ning ; Lihachev, Grigory ; Zhang, Junyin ; Tan, Zelin ; Churaev, Mikhail ; Kuznetsov, Nikolai ; Siddharth, Anat ; Bereyhi, Mohammad J. ; Riemensberger, Johann ; Kippenberg, Tobias J.</creatorcontrib><description>Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40502-8</identifier><identifier>PMID: 37563149</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1079 ; 639/624/1111/1113 ; Carbon ; Confining ; Density ; Diamond-like carbon ; Electric potential ; Etching ; Fabrication ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Humanities and Social Sciences ; Integrated circuits ; Light modulation ; Lithium ; Lithium niobates ; multidisciplinary ; Optical fibers ; Optics ; Photonics ; Science ; Science (multidisciplinary) ; Voltage ; Waveguides</subject><ispartof>Nature communications, 2023-08, Vol.14 (1), p.4856-4856, Article 4856</ispartof><rights>The Author(s) 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</citedby><cites>FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</cites><orcidid>0000-0002-1864-3288 ; 0000-0003-4066-7304 ; 0000-0002-5704-3971 ; 0000-0002-7685-4868 ; 0000-0001-7597-8941 ; 0000-0002-3408-886X ; 0000-0002-3468-6501 ; 0000-0002-5609-5331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848616734/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848616734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37563149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Zhang, Junyin</creatorcontrib><creatorcontrib>Tan, Zelin</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Kuznetsov, Nikolai</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Bereyhi, Mohammad J.</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><title>High density lithium niobate photonic integrated circuits</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.</description><subject>639/624/1075/1079</subject><subject>639/624/1111/1113</subject><subject>Carbon</subject><subject>Confining</subject><subject>Density</subject><subject>Diamond-like carbon</subject><subject>Electric potential</subject><subject>Etching</subject><subject>Fabrication</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Humanities and Social Sciences</subject><subject>Integrated circuits</subject><subject>Light modulation</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>multidisciplinary</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Photonics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Voltage</subject><subject>Waveguides</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFvFSEQxzdGY5vaL-DBbOLFy-oAA8uejGnUNmniRc-EBXYfL_vgCaxJv720W2vrQS7AzH9-M_BvmtcE3hNg8kNGgqLvgLIOgQPt5LPmlAKSjvSUPX90PmnOc95DXWwgEvFlc8J6LhjB4bQZLv28a60L2ZebdvFl59dDG3wcdXHtcRdLDN60PhQ3pxqyrfHJrL7kV82LSS_Znd_vZ82PL5-_X1x219--Xl18uu4MR1K60XEhtTUDqXfjegnUcjlqBoO0UmtAJi1nRDKJPQFB6ly9GbWTEgcEzc6aq41ro96rY_IHnW5U1F7dBWKalU7Fm8WpqVIE9EyM04So6SD5BJOklHNtieCV9XFjHdfx4KxxoSS9PIE-zQS_U3P8pUj9TM6AVMK7e0KKP1eXizr4bNyy6ODimhWVHBigwNtmb_-R7uOaQv2rqkIpiOgZVhXdVCbFnJObHqYhoG6dVpvTqjqt7pxWsha9efyOh5I_vlYB2wS5psLs0t_e_8H-Bhk2saw</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Li, Zihan</creator><creator>Wang, Rui Ning</creator><creator>Lihachev, Grigory</creator><creator>Zhang, Junyin</creator><creator>Tan, Zelin</creator><creator>Churaev, Mikhail</creator><creator>Kuznetsov, Nikolai</creator><creator>Siddharth, Anat</creator><creator>Bereyhi, Mohammad J.</creator><creator>Riemensberger, Johann</creator><creator>Kippenberg, Tobias J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1864-3288</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid><orcidid>https://orcid.org/0000-0002-7685-4868</orcidid><orcidid>https://orcid.org/0000-0001-7597-8941</orcidid><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-5609-5331</orcidid></search><sort><creationdate>20230810</creationdate><title>High density lithium niobate photonic integrated circuits</title><author>Li, Zihan ; Wang, Rui Ning ; Lihachev, Grigory ; Zhang, Junyin ; Tan, Zelin ; Churaev, Mikhail ; Kuznetsov, Nikolai ; Siddharth, Anat ; Bereyhi, Mohammad J. ; Riemensberger, Johann ; Kippenberg, Tobias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1075/1079</topic><topic>639/624/1111/1113</topic><topic>Carbon</topic><topic>Confining</topic><topic>Density</topic><topic>Diamond-like carbon</topic><topic>Electric potential</topic><topic>Etching</topic><topic>Fabrication</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Humanities and Social Sciences</topic><topic>Integrated circuits</topic><topic>Light modulation</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>multidisciplinary</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Photonics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Voltage</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Zhang, Junyin</creatorcontrib><creatorcontrib>Tan, Zelin</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Kuznetsov, Nikolai</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Bereyhi, Mohammad J.</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zihan</au><au>Wang, Rui Ning</au><au>Lihachev, Grigory</au><au>Zhang, Junyin</au><au>Tan, Zelin</au><au>Churaev, Mikhail</au><au>Kuznetsov, Nikolai</au><au>Siddharth, Anat</au><au>Bereyhi, Mohammad J.</au><au>Riemensberger, Johann</au><au>Kippenberg, Tobias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High density lithium niobate photonic integrated circuits</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4856</spage><epage>4856</epage><pages>4856-4856</pages><artnum>4856</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Photonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO 3 . Using DLC as a hard mask, we demonstrate the fabrication of deeply etched, tightly confining, low loss waveguides with losses as low as 4 dB/m. In contrast to widely employed ridge waveguides, this approach benefits from a more than one order of magnitude higher area integration density while maintaining efficient electro-optical modulation, low loss, and offering a route for efficient optical fiber interfaces. As a proof of concept, we demonstrate a III-V/LiNbO 3 based laser with sub-kHz intrinsic linewidth and tuning rate of 0.7 PHz/s with excellent linearity and CMOS-compatible driving voltage. We also demonstrated a MZM modulator with a 1.73 cm length and a halfwave voltage of 1.94 V. Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37563149</pmid><doi>10.1038/s41467-023-40502-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1864-3288</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid><orcidid>https://orcid.org/0000-0002-7685-4868</orcidid><orcidid>https://orcid.org/0000-0001-7597-8941</orcidid><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-5609-5331</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-08, Vol.14 (1), p.4856-4856, Article 4856
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f18360736bff44a2985f0f82255ad165
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/1075/1079
639/624/1111/1113
Carbon
Confining
Density
Diamond-like carbon
Electric potential
Etching
Fabrication
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Humanities and Social Sciences
Integrated circuits
Light modulation
Lithium
Lithium niobates
multidisciplinary
Optical fibers
Optics
Photonics
Science
Science (multidisciplinary)
Voltage
Waveguides
title High density lithium niobate photonic integrated circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20density%20lithium%20niobate%20photonic%20integrated%20circuits&rft.jtitle=Nature%20communications&rft.au=Li,%20Zihan&rft.date=2023-08-10&rft.volume=14&rft.issue=1&rft.spage=4856&rft.epage=4856&rft.pages=4856-4856&rft.artnum=4856&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40502-8&rft_dat=%3Cproquest_doaj_%3E2848616734%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-be568adc91c54ce7802d58ba3098d8aa0438d5318384710613147cbae884940a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848616734&rft_id=info:pmid/37563149&rfr_iscdi=true