Loading…
Strain and atomic stacking of bismuth thin film in its quasi-van der Waals epitaxy on (111) Si substrate
We report on the structural properties of Bi thin films grown on (111) Si substrates with a thickness of 22–30 BL. HRXRD and EBSD measurements show that these Bi films are mainly composed of twinning grains in the (0003) direction. The grain size can be as large as tens of microns. From a double-pea...
Saved in:
Published in: | Scientific reports 2023-11, Vol.13 (1), p.19769-19769, Article 19769 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the structural properties of Bi thin films grown on (111) Si substrates with a thickness of 22–30 BL. HRXRD and EBSD measurements show that these Bi films are mainly composed of twinning grains in the (0003) direction. The grain size can be as large as tens of microns. From a double-peak (01
1
¯
4) φ-scan, we found two pairs of twinning phases coexisting with a rotation angle of ~ 3.6°. We proposed a coincidence site lattice model based on preferential close-packed sites for Bi atoms on Si (111) surface to explain the coexistence of the rotation phases in the quasi-van der Waals epitaxy. From the measured lattice constants c and
a
of our samples, along with the data from the literature, we derived a c–
a
relation: (c–c
0
) = − 2.038(
a
–
a
0
), where c
0
and
a
0
are the values of bulk Bi. The normalized position of the second basis atom in the unit cell x, in these strained Bi films is found very close to that of bulk Bi, indicating that the strain does not disturb the Peierls distortion of the lattice. The fixed ratio of bilayer thickness to lattice constant c, reveals that the elastic properties of covalent-bonded bilayer dominate those of Bi crystal. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-46860-z |