Loading…
Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching
Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clon...
Saved in:
Published in: | Cell death & disease 2022-08, Vol.13 (8), p.682-13, Article 682 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-99085f23af1712c5f82d4144fc7eb81c802a3cb7e625d0b26db38810b219c6eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-99085f23af1712c5f82d4144fc7eb81c802a3cb7e625d0b26db38810b219c6eb3 |
container_end_page | 13 |
container_issue | 8 |
container_start_page | 682 |
container_title | Cell death & disease |
container_volume | 13 |
creator | Chen, Chen Zhao, Shujie Zhao, Xiangru Cao, Lin Karnad, Anand Kumar, Addanki P. Freeman, James W. |
description | Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan–Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer. |
doi_str_mv | 10.1038/s41419-022-05103-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f199611b4a904513a3e555e3c86b3dec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f199611b4a904513a3e555e3c86b3dec</doaj_id><sourcerecordid>2698989141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-99085f23af1712c5f82d4144fc7eb81c802a3cb7e625d0b26db38810b219c6eb3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxyMEolXpC3BAljiH-jOxL0hooduVKiEhOFv-mKReZeNgZ4G-AM-N05TSXrAPHv1n5mePZ6rqNcHvCGbyInPCiaoxpTUWRanJs-qUYk5qLqV6_sg-qc5z3uOyGMNUNC-rEyYUI00rTqvfWzi4MBsbRkAJcsizGR2g2KGpGAnMHBxyi5aQg2HIKGR0AB_MDB7ZW7TbXpIvyMMEo4dxRscpQX8cSl4cF8zmI-cIfhU150Uyoy-I2MV0QPlnmN1NGPtX1YvODBnO78-z6tvlp6-bq_r683a3-XBdO8HxXCuFpegoMx1pCXWik9SXf-Cda8FK4iSmhjnbQkOFx5Y23jIpSbGIcg1YdlbtVq6PZq-nFA4m3epogr4TYuq1SaXiAXRHlGoIsdwozAVhhoEQApiTjWUeXGG9X1nT0ZYPcaX4ZIYn0KeeMdzoPv7QigmhRFsAb-8BKX4_Qp71Ph7TWOrXtFGy7NLiEkXXKJdizgm6hxsI1sso6HUUdBkFfTcKekl68_htDyl_G18C2BqQi2vsIf27-z_YP8Z9wEE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698989141</pqid></control><display><type>article</type><title>Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chen, Chen ; Zhao, Shujie ; Zhao, Xiangru ; Cao, Lin ; Karnad, Anand ; Kumar, Addanki P. ; Freeman, James W.</creator><creatorcontrib>Chen, Chen ; Zhao, Shujie ; Zhao, Xiangru ; Cao, Lin ; Karnad, Anand ; Kumar, Addanki P. ; Freeman, James W.</creatorcontrib><description>Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan–Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-022-05103-1</identifier><identifier>PMID: 35931675</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/109 ; 13/21 ; 13/89 ; 13/95 ; 38 ; 38/77 ; 38/79 ; 38/90 ; 64/60 ; 692/308/153 ; 692/699/67/1059/99 ; 82 ; 82/80 ; Antibodies ; Antimetabolites, Antineoplastic - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; CD44 antigen ; Cell Biology ; Cell Culture ; Cell Line, Tumor ; Chemoresistance ; Chromatin ; Deoxycytidine - analogs & derivatives ; Drug Resistance, Neoplasm - genetics ; E-cadherin ; EGR-1 protein ; Ets-1 protein ; Gemcitabine ; Humans ; Hyaluronan Receptors - genetics ; Hyaluronan Receptors - metabolism ; Immunology ; Immunoprecipitation ; Invasiveness ; Isoforms ; Life Sciences ; Pancreatic cancer ; Pancreatic Neoplasms ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Patients ; Phosphorylation ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Receptor, IGF Type 1 - genetics ; Receptor, IGF Type 1 - metabolism ; Transcription factors ; Transcription Factors - metabolism ; Tumors ; Up-Regulation ; Western blotting</subject><ispartof>Cell death & disease, 2022-08, Vol.13 (8), p.682-13, Article 682</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-99085f23af1712c5f82d4144fc7eb81c802a3cb7e625d0b26db38810b219c6eb3</citedby><cites>FETCH-LOGICAL-c540t-99085f23af1712c5f82d4144fc7eb81c802a3cb7e625d0b26db38810b219c6eb3</cites><orcidid>0000-0001-7347-1557 ; 0000-0001-9317-9588 ; 0000-0001-5758-325X ; 0000-0002-2587-8827 ; 0000-0003-3633-6940 ; 0000-0001-5596-6265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2698989141/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2698989141?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35931675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhao, Shujie</creatorcontrib><creatorcontrib>Zhao, Xiangru</creatorcontrib><creatorcontrib>Cao, Lin</creatorcontrib><creatorcontrib>Karnad, Anand</creatorcontrib><creatorcontrib>Kumar, Addanki P.</creatorcontrib><creatorcontrib>Freeman, James W.</creatorcontrib><title>Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching</title><title>Cell death & disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan–Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.</description><subject>13</subject><subject>13/109</subject><subject>13/21</subject><subject>13/89</subject><subject>13/95</subject><subject>38</subject><subject>38/77</subject><subject>38/79</subject><subject>38/90</subject><subject>64/60</subject><subject>692/308/153</subject><subject>692/699/67/1059/99</subject><subject>82</subject><subject>82/80</subject><subject>Antibodies</subject><subject>Antimetabolites, Antineoplastic - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>CD44 antigen</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Line, Tumor</subject><subject>Chemoresistance</subject><subject>Chromatin</subject><subject>Deoxycytidine - analogs & derivatives</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>E-cadherin</subject><subject>EGR-1 protein</subject><subject>Ets-1 protein</subject><subject>Gemcitabine</subject><subject>Humans</subject><subject>Hyaluronan Receptors - genetics</subject><subject>Hyaluronan Receptors - metabolism</subject><subject>Immunology</subject><subject>Immunoprecipitation</subject><subject>Invasiveness</subject><subject>Isoforms</subject><subject>Life Sciences</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Patients</subject><subject>Phosphorylation</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Receptor, IGF Type 1 - genetics</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Tumors</subject><subject>Up-Regulation</subject><subject>Western blotting</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAQxyMEolXpC3BAljiH-jOxL0hooduVKiEhOFv-mKReZeNgZ4G-AM-N05TSXrAPHv1n5mePZ6rqNcHvCGbyInPCiaoxpTUWRanJs-qUYk5qLqV6_sg-qc5z3uOyGMNUNC-rEyYUI00rTqvfWzi4MBsbRkAJcsizGR2g2KGpGAnMHBxyi5aQg2HIKGR0AB_MDB7ZW7TbXpIvyMMEo4dxRscpQX8cSl4cF8zmI-cIfhU150Uyoy-I2MV0QPlnmN1NGPtX1YvODBnO78-z6tvlp6-bq_r683a3-XBdO8HxXCuFpegoMx1pCXWik9SXf-Cda8FK4iSmhjnbQkOFx5Y23jIpSbGIcg1YdlbtVq6PZq-nFA4m3epogr4TYuq1SaXiAXRHlGoIsdwozAVhhoEQApiTjWUeXGG9X1nT0ZYPcaX4ZIYn0KeeMdzoPv7QigmhRFsAb-8BKX4_Qp71Ph7TWOrXtFGy7NLiEkXXKJdizgm6hxsI1sso6HUUdBkFfTcKekl68_htDyl_G18C2BqQi2vsIf27-z_YP8Z9wEE</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Chen, Chen</creator><creator>Zhao, Shujie</creator><creator>Zhao, Xiangru</creator><creator>Cao, Lin</creator><creator>Karnad, Anand</creator><creator>Kumar, Addanki P.</creator><creator>Freeman, James W.</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7347-1557</orcidid><orcidid>https://orcid.org/0000-0001-9317-9588</orcidid><orcidid>https://orcid.org/0000-0001-5758-325X</orcidid><orcidid>https://orcid.org/0000-0002-2587-8827</orcidid><orcidid>https://orcid.org/0000-0003-3633-6940</orcidid><orcidid>https://orcid.org/0000-0001-5596-6265</orcidid></search><sort><creationdate>20220805</creationdate><title>Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching</title><author>Chen, Chen ; Zhao, Shujie ; Zhao, Xiangru ; Cao, Lin ; Karnad, Anand ; Kumar, Addanki P. ; Freeman, James W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-99085f23af1712c5f82d4144fc7eb81c802a3cb7e625d0b26db38810b219c6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13</topic><topic>13/109</topic><topic>13/21</topic><topic>13/89</topic><topic>13/95</topic><topic>38</topic><topic>38/77</topic><topic>38/79</topic><topic>38/90</topic><topic>64/60</topic><topic>692/308/153</topic><topic>692/699/67/1059/99</topic><topic>82</topic><topic>82/80</topic><topic>Antibodies</topic><topic>Antimetabolites, Antineoplastic - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>CD44 antigen</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Line, Tumor</topic><topic>Chemoresistance</topic><topic>Chromatin</topic><topic>Deoxycytidine - analogs & derivatives</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>E-cadherin</topic><topic>EGR-1 protein</topic><topic>Ets-1 protein</topic><topic>Gemcitabine</topic><topic>Humans</topic><topic>Hyaluronan Receptors - genetics</topic><topic>Hyaluronan Receptors - metabolism</topic><topic>Immunology</topic><topic>Immunoprecipitation</topic><topic>Invasiveness</topic><topic>Isoforms</topic><topic>Life Sciences</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Patients</topic><topic>Phosphorylation</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Receptor, IGF Type 1 - genetics</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Tumors</topic><topic>Up-Regulation</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhao, Shujie</creatorcontrib><creatorcontrib>Zhao, Xiangru</creatorcontrib><creatorcontrib>Cao, Lin</creatorcontrib><creatorcontrib>Karnad, Anand</creatorcontrib><creatorcontrib>Kumar, Addanki P.</creatorcontrib><creatorcontrib>Freeman, James W.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell death & disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chen</au><au>Zhao, Shujie</au><au>Zhao, Xiangru</au><au>Cao, Lin</au><au>Karnad, Anand</au><au>Kumar, Addanki P.</au><au>Freeman, James W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching</atitle><jtitle>Cell death & disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2022-08-05</date><risdate>2022</risdate><volume>13</volume><issue>8</issue><spage>682</spage><epage>13</epage><pages>682-13</pages><artnum>682</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan–Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35931675</pmid><doi>10.1038/s41419-022-05103-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7347-1557</orcidid><orcidid>https://orcid.org/0000-0001-9317-9588</orcidid><orcidid>https://orcid.org/0000-0001-5758-325X</orcidid><orcidid>https://orcid.org/0000-0002-2587-8827</orcidid><orcidid>https://orcid.org/0000-0003-3633-6940</orcidid><orcidid>https://orcid.org/0000-0001-5596-6265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-4889 |
ispartof | Cell death & disease, 2022-08, Vol.13 (8), p.682-13, Article 682 |
issn | 2041-4889 2041-4889 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f199611b4a904513a3e555e3c86b3dec |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/109 13/21 13/89 13/95 38 38/77 38/79 38/90 64/60 692/308/153 692/699/67/1059/99 82 82/80 Antibodies Antimetabolites, Antineoplastic - pharmacology Biochemistry Biomedical and Life Sciences CD44 antigen Cell Biology Cell Culture Cell Line, Tumor Chemoresistance Chromatin Deoxycytidine - analogs & derivatives Drug Resistance, Neoplasm - genetics E-cadherin EGR-1 protein Ets-1 protein Gemcitabine Humans Hyaluronan Receptors - genetics Hyaluronan Receptors - metabolism Immunology Immunoprecipitation Invasiveness Isoforms Life Sciences Pancreatic cancer Pancreatic Neoplasms Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Patients Phosphorylation Protein Isoforms - genetics Protein Isoforms - metabolism Receptor, IGF Type 1 - genetics Receptor, IGF Type 1 - metabolism Transcription factors Transcription Factors - metabolism Tumors Up-Regulation Western blotting |
title | Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gemcitabine%20resistance%20of%20pancreatic%20cancer%20cells%20is%20mediated%20by%20IGF1R%20dependent%20upregulation%20of%20CD44%20expression%20and%20isoform%20switching&rft.jtitle=Cell%20death%20&%20disease&rft.au=Chen,%20Chen&rft.date=2022-08-05&rft.volume=13&rft.issue=8&rft.spage=682&rft.epage=13&rft.pages=682-13&rft.artnum=682&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-022-05103-1&rft_dat=%3Cproquest_doaj_%3E2698989141%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-99085f23af1712c5f82d4144fc7eb81c802a3cb7e625d0b26db38810b219c6eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2698989141&rft_id=info:pmid/35931675&rfr_iscdi=true |