Loading…
A kernel Gabor-based weighted region covariance matrix for face recognition
This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2012-06, Vol.12 (6), p.7410-7422 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c505t-b9ff615be96e580014d035cf0e5ec2b91d6f640d104dbcb0fd93fea443c09d2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c505t-b9ff615be96e580014d035cf0e5ec2b91d6f640d104dbcb0fd93fea443c09d2f3 |
container_end_page | 7422 |
container_issue | 6 |
container_start_page | 7410 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 12 |
creator | Qin, Huafeng Qin, Lan Xue, Lian Li, Yantao |
description | This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a region covariance matrix, named weighted region covariance matrix (WRCM), to obtain the discriminative features of faces for recognition. Finally, to further preserve discriminative features in higher dimensional space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results show that the KGWRCM outperforms other algorithms including the kernel Gabor-based region covariance matrix (KGCRM). |
doi_str_mv | 10.3390/s120607410 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f1c0ec81125a4adf8f30f5bb26f18f40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1c0ec81125a4adf8f30f5bb26f18f40</doaj_id><sourcerecordid>3340613641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-b9ff615be96e580014d035cf0e5ec2b91d6f640d104dbcb0fd93fea443c09d2f3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw4QegSFwQUmDssb3xBamqoFRU4gJnyx_j1Es2Lna2hX9Pli2l5cLJ4_GjRzPW2zTPGbxB1PC2Mg4KVoLBg-aQCS66nnN4eKc-aJ7UugbgiNg_bg4410qjZIfNp-P2G5WJxvbUulw6ZyuF9prScDEvRaEh5an1-cqWZCdP7cbOJf1oYy5ttMu9kM_DlOYFe9o8inas9OzmPGq-fnj_5eRjd_759Ozk-LzzEuTcOR2jYtKRViR7ACYCoPQRSJLnTrOgohIQGIjgvIMYNEayQqAHHXjEo-Zs7w3Zrs1lSRtbfppsk_ndyGUwtszJj2Qi80C-Z4xLK2yIfUSI0jmuIuujgMX1bu-63LoNBU_TXOx4T3r_ZUoXZshXBgVK3e8Er24EJX_fUp3NJlVP42gnyttqGHLkApSS_0cBNQrFQS_oy3_Qdd6WaflVwySu1GpZaCd8vad8ybUWirdzMzC7aJi_0VjgF3c3vUX_ZAF_Ae7Xszw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537671255</pqid></control><display><type>article</type><title>A kernel Gabor-based weighted region covariance matrix for face recognition</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Qin, Huafeng ; Qin, Lan ; Xue, Lian ; Li, Yantao</creator><creatorcontrib>Qin, Huafeng ; Qin, Lan ; Xue, Lian ; Li, Yantao</creatorcontrib><description>This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a region covariance matrix, named weighted region covariance matrix (WRCM), to obtain the discriminative features of faces for recognition. Finally, to further preserve discriminative features in higher dimensional space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results show that the KGWRCM outperforms other algorithms including the kernel Gabor-based region covariance matrix (KGCRM).</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s120607410</identifier><identifier>PMID: 22969351</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Covariance matrix ; Face recognition ; Feature recognition ; Gabor features ; kernalization ; Kernels ; Preserves ; Recognition ; Sensors ; weighted region covariance matrix ; Weighting</subject><ispartof>Sensors (Basel, Switzerland), 2012-06, Vol.12 (6), p.7410-7422</ispartof><rights>Copyright MDPI AG 2012</rights><rights>2012 by the authors; licensee MDPI, Basel, Switzerland. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-b9ff615be96e580014d035cf0e5ec2b91d6f640d104dbcb0fd93fea443c09d2f3</citedby><cites>FETCH-LOGICAL-c505t-b9ff615be96e580014d035cf0e5ec2b91d6f640d104dbcb0fd93fea443c09d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1537671255/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1537671255?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22969351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Huafeng</creatorcontrib><creatorcontrib>Qin, Lan</creatorcontrib><creatorcontrib>Xue, Lian</creatorcontrib><creatorcontrib>Li, Yantao</creatorcontrib><title>A kernel Gabor-based weighted region covariance matrix for face recognition</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a region covariance matrix, named weighted region covariance matrix (WRCM), to obtain the discriminative features of faces for recognition. Finally, to further preserve discriminative features in higher dimensional space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results show that the KGWRCM outperforms other algorithms including the kernel Gabor-based region covariance matrix (KGCRM).</description><subject>Algorithms</subject><subject>Covariance matrix</subject><subject>Face recognition</subject><subject>Feature recognition</subject><subject>Gabor features</subject><subject>kernalization</subject><subject>Kernels</subject><subject>Preserves</subject><subject>Recognition</subject><subject>Sensors</subject><subject>weighted region covariance matrix</subject><subject>Weighting</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw4QegSFwQUmDssb3xBamqoFRU4gJnyx_j1Es2Lna2hX9Pli2l5cLJ4_GjRzPW2zTPGbxB1PC2Mg4KVoLBg-aQCS66nnN4eKc-aJ7UugbgiNg_bg4410qjZIfNp-P2G5WJxvbUulw6ZyuF9prScDEvRaEh5an1-cqWZCdP7cbOJf1oYy5ttMu9kM_DlOYFe9o8inas9OzmPGq-fnj_5eRjd_759Ozk-LzzEuTcOR2jYtKRViR7ACYCoPQRSJLnTrOgohIQGIjgvIMYNEayQqAHHXjEo-Zs7w3Zrs1lSRtbfppsk_ndyGUwtszJj2Qi80C-Z4xLK2yIfUSI0jmuIuujgMX1bu-63LoNBU_TXOx4T3r_ZUoXZshXBgVK3e8Er24EJX_fUp3NJlVP42gnyttqGHLkApSS_0cBNQrFQS_oy3_Qdd6WaflVwySu1GpZaCd8vad8ybUWirdzMzC7aJi_0VjgF3c3vUX_ZAF_Ae7Xszw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Qin, Huafeng</creator><creator>Qin, Lan</creator><creator>Xue, Lian</creator><creator>Li, Yantao</creator><general>MDPI AG</general><general>Molecular Diversity Preservation International (MDPI)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120601</creationdate><title>A kernel Gabor-based weighted region covariance matrix for face recognition</title><author>Qin, Huafeng ; Qin, Lan ; Xue, Lian ; Li, Yantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-b9ff615be96e580014d035cf0e5ec2b91d6f640d104dbcb0fd93fea443c09d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Covariance matrix</topic><topic>Face recognition</topic><topic>Feature recognition</topic><topic>Gabor features</topic><topic>kernalization</topic><topic>Kernels</topic><topic>Preserves</topic><topic>Recognition</topic><topic>Sensors</topic><topic>weighted region covariance matrix</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Huafeng</creatorcontrib><creatorcontrib>Qin, Lan</creatorcontrib><creatorcontrib>Xue, Lian</creatorcontrib><creatorcontrib>Li, Yantao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Huafeng</au><au>Qin, Lan</au><au>Xue, Lian</au><au>Li, Yantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kernel Gabor-based weighted region covariance matrix for face recognition</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>12</volume><issue>6</issue><spage>7410</spage><epage>7422</epage><pages>7410-7422</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>This paper proposes a novel image region descriptor for face recognition, named kernel Gabor-based weighted region covariance matrix (KGWRCM). As different parts are different effectual in characterizing and recognizing faces, we construct a weighting matrix by computing the similarity of each pixel within a face sample to emphasize features. We then incorporate the weighting matrices into a region covariance matrix, named weighted region covariance matrix (WRCM), to obtain the discriminative features of faces for recognition. Finally, to further preserve discriminative features in higher dimensional space, we develop the kernel Gabor-based weighted region covariance matrix (KGWRCM). Experimental results show that the KGWRCM outperforms other algorithms including the kernel Gabor-based region covariance matrix (KGCRM).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>22969351</pmid><doi>10.3390/s120607410</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2012-06, Vol.12 (6), p.7410-7422 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f1c0ec81125a4adf8f30f5bb26f18f40 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Covariance matrix Face recognition Feature recognition Gabor features kernalization Kernels Preserves Recognition Sensors weighted region covariance matrix Weighting |
title | A kernel Gabor-based weighted region covariance matrix for face recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kernel%20Gabor-based%20weighted%20region%20covariance%20matrix%20for%20face%20recognition&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Qin,%20Huafeng&rft.date=2012-06-01&rft.volume=12&rft.issue=6&rft.spage=7410&rft.epage=7422&rft.pages=7410-7422&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s120607410&rft_dat=%3Cproquest_doaj_%3E3340613641%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-b9ff615be96e580014d035cf0e5ec2b91d6f640d104dbcb0fd93fea443c09d2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537671255&rft_id=info:pmid/22969351&rfr_iscdi=true |