Loading…

Genome-wide computational prediction of tandem gene arrays: application in yeasts

This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2010-01, Vol.11 (1), p.56-56
Main Authors: Despons, Laurence, Baret, Philippe V, Frangeul, Lionel, Louis, Véronique Leh, Durrens, Pascal, Souciet, Jean-Luc
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3
cites
container_end_page 56
container_issue 1
container_start_page 56
container_title BMC genomics
container_volume 11
creator Despons, Laurence
Baret, Philippe V
Frangeul, Lionel
Louis, Véronique Leh
Durrens, Pascal
Souciet, Jean-Luc
description This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality. Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs. The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.
doi_str_mv 10.1186/1471-2164-11-56
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f1c4909bcdfe4f3e9ef1ed82c05ce608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A219035398</galeid><doaj_id>oai_doaj_org_article_f1c4909bcdfe4f3e9ef1ed82c05ce608</doaj_id><sourcerecordid>A219035398</sourcerecordid><originalsourceid>FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3</originalsourceid><addsrcrecordid>eNp9k01v1DAQhiMEoqVw5oYiOACHtP5I7JgD0lJBu9JKiK-z5TjjraskDnZS2H-P05RVUxXkg-3xM69H79hJ8hyjY4xLdoJzjjOCWZ5hnBXsQXK4jzy8tT5InoRwiRDmJSkeJwcEIUEY4YfJlzPoXAvZL1tDql3bj4MarOtUk_YeaqunTepMOqiuhjbdQgep8l7twrtU9X1j9TWf2i7dgQpDeJo8MqoJ8OxmPkp-fPr4_fQ823w-W5-uNlnFMRuyMlc5ZZTrilDIOeVgdKWVKSooUB3DFSZFyaGkYHLMGFZKI8GZEMARqRU9Stazbu3Upey9bZXfSaesvA44v5XKD1Y3IA3WuUCi0rWB3FAQYDDUJdGo0MBQGbXez1r9WLVQa-gGr5qF6PKksxdy664kKQnhLI8C2SxwcSftfLWRfbQFRi8RYhwxSq5w5D_MfGXdPy5cnsTWyKmdcmqnxFgWLIq8vqnau58jhEG2NmhoGtWBG4PklArKRD6Rb_5LYkRyxiglPKIv76CXbvTxPQQpCI5aORYRejVDWxXttZ1xsUg9acoVwQLRgorJ1eN7qDjiQ7LadWBsjC8S3i4SIjPA72GrxhDk-tvXJXsys9q7EDyYvXkYyelv3GPXi9tN3vN_PwP9A_NAB_c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921463419</pqid></control><display><type>article</type><title>Genome-wide computational prediction of tandem gene arrays: application in yeasts</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Despons, Laurence ; Baret, Philippe V ; Frangeul, Lionel ; Louis, Véronique Leh ; Durrens, Pascal ; Souciet, Jean-Luc</creator><creatorcontrib>Despons, Laurence ; Baret, Philippe V ; Frangeul, Lionel ; Louis, Véronique Leh ; Durrens, Pascal ; Souciet, Jean-Luc</creatorcontrib><description>This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality. Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs. The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2164-11-56</identifier><identifier>PMID: 20092627</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Amino acid sequence ; Biochemistry, Molecular Biology ; Computational Biology ; Computational Biology - methods ; Computer applications ; Databases, Genetic ; DNA microarrays ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Gene clusters ; Gene conversion ; gene duplication ; Genes ; Genetic aspects ; Genome, Fungal ; Genomes ; Genomics ; Genomics - methods ; Life Sciences ; Methodology ; Methods ; Minisatellite Repeats ; Oligonucleotide Array Sequence Analysis ; Phylogeny ; Prokaryotes ; Sequence Analysis, DNA ; Yeast ; Yeast fungi ; Yeasts ; Yeasts - genetics</subject><ispartof>BMC genomics, 2010-01, Vol.11 (1), p.56-56</ispartof><rights>COPYRIGHT 2010 BioMed Central Ltd.</rights><rights>2010 Despons et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright ©2010 Despons et al; licensee BioMed Central Ltd. 2010 Despons et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3</citedby><orcidid>0000-0002-6189-666X ; 0000-0002-3948-7106 ; 0000-0002-0992-8775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822764/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/921463419?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20092627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-00670632$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Despons, Laurence</creatorcontrib><creatorcontrib>Baret, Philippe V</creatorcontrib><creatorcontrib>Frangeul, Lionel</creatorcontrib><creatorcontrib>Louis, Véronique Leh</creatorcontrib><creatorcontrib>Durrens, Pascal</creatorcontrib><creatorcontrib>Souciet, Jean-Luc</creatorcontrib><title>Genome-wide computational prediction of tandem gene arrays: application in yeasts</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality. Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs. The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</description><subject>Algorithms</subject><subject>Amino acid sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Computational Biology</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Databases, Genetic</subject><subject>DNA microarrays</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene clusters</subject><subject>Gene conversion</subject><subject>gene duplication</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Life Sciences</subject><subject>Methodology</subject><subject>Methods</subject><subject>Minisatellite Repeats</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phylogeny</subject><subject>Prokaryotes</subject><subject>Sequence Analysis, DNA</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><subject>Yeasts - genetics</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9k01v1DAQhiMEoqVw5oYiOACHtP5I7JgD0lJBu9JKiK-z5TjjraskDnZS2H-P05RVUxXkg-3xM69H79hJ8hyjY4xLdoJzjjOCWZ5hnBXsQXK4jzy8tT5InoRwiRDmJSkeJwcEIUEY4YfJlzPoXAvZL1tDql3bj4MarOtUk_YeaqunTepMOqiuhjbdQgep8l7twrtU9X1j9TWf2i7dgQpDeJo8MqoJ8OxmPkp-fPr4_fQ823w-W5-uNlnFMRuyMlc5ZZTrilDIOeVgdKWVKSooUB3DFSZFyaGkYHLMGFZKI8GZEMARqRU9Stazbu3Upey9bZXfSaesvA44v5XKD1Y3IA3WuUCi0rWB3FAQYDDUJdGo0MBQGbXez1r9WLVQa-gGr5qF6PKksxdy664kKQnhLI8C2SxwcSftfLWRfbQFRi8RYhwxSq5w5D_MfGXdPy5cnsTWyKmdcmqnxFgWLIq8vqnau58jhEG2NmhoGtWBG4PklArKRD6Rb_5LYkRyxiglPKIv76CXbvTxPQQpCI5aORYRejVDWxXttZ1xsUg9acoVwQLRgorJ1eN7qDjiQ7LadWBsjC8S3i4SIjPA72GrxhDk-tvXJXsys9q7EDyYvXkYyelv3GPXi9tN3vN_PwP9A_NAB_c</recordid><startdate>20100121</startdate><enddate>20100121</enddate><creator>Despons, Laurence</creator><creator>Baret, Philippe V</creator><creator>Frangeul, Lionel</creator><creator>Louis, Véronique Leh</creator><creator>Durrens, Pascal</creator><creator>Souciet, Jean-Luc</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6189-666X</orcidid><orcidid>https://orcid.org/0000-0002-3948-7106</orcidid><orcidid>https://orcid.org/0000-0002-0992-8775</orcidid></search><sort><creationdate>20100121</creationdate><title>Genome-wide computational prediction of tandem gene arrays: application in yeasts</title><author>Despons, Laurence ; Baret, Philippe V ; Frangeul, Lionel ; Louis, Véronique Leh ; Durrens, Pascal ; Souciet, Jean-Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Amino acid sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Computational Biology</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Databases, Genetic</topic><topic>DNA microarrays</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene clusters</topic><topic>Gene conversion</topic><topic>gene duplication</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Life Sciences</topic><topic>Methodology</topic><topic>Methods</topic><topic>Minisatellite Repeats</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phylogeny</topic><topic>Prokaryotes</topic><topic>Sequence Analysis, DNA</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Despons, Laurence</creatorcontrib><creatorcontrib>Baret, Philippe V</creatorcontrib><creatorcontrib>Frangeul, Lionel</creatorcontrib><creatorcontrib>Louis, Véronique Leh</creatorcontrib><creatorcontrib>Durrens, Pascal</creatorcontrib><creatorcontrib>Souciet, Jean-Luc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Despons, Laurence</au><au>Baret, Philippe V</au><au>Frangeul, Lionel</au><au>Louis, Véronique Leh</au><au>Durrens, Pascal</au><au>Souciet, Jean-Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide computational prediction of tandem gene arrays: application in yeasts</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2010-01-21</date><risdate>2010</risdate><volume>11</volume><issue>1</issue><spage>56</spage><epage>56</epage><pages>56-56</pages><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality. Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs. The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>20092627</pmid><doi>10.1186/1471-2164-11-56</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6189-666X</orcidid><orcidid>https://orcid.org/0000-0002-3948-7106</orcidid><orcidid>https://orcid.org/0000-0002-0992-8775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2010-01, Vol.11 (1), p.56-56
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f1c4909bcdfe4f3e9ef1ed82c05ce608
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access)
subjects Algorithms
Amino acid sequence
Biochemistry, Molecular Biology
Computational Biology
Computational Biology - methods
Computer applications
Databases, Genetic
DNA microarrays
Evolution
Evolution, Molecular
Evolutionary genetics
Gene clusters
Gene conversion
gene duplication
Genes
Genetic aspects
Genome, Fungal
Genomes
Genomics
Genomics - methods
Life Sciences
Methodology
Methods
Minisatellite Repeats
Oligonucleotide Array Sequence Analysis
Phylogeny
Prokaryotes
Sequence Analysis, DNA
Yeast
Yeast fungi
Yeasts
Yeasts - genetics
title Genome-wide computational prediction of tandem gene arrays: application in yeasts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20computational%20prediction%20of%20tandem%20gene%20arrays:%20application%20in%20yeasts&rft.jtitle=BMC%20genomics&rft.au=Despons,%20Laurence&rft.date=2010-01-21&rft.volume=11&rft.issue=1&rft.spage=56&rft.epage=56&rft.pages=56-56&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/1471-2164-11-56&rft_dat=%3Cgale_doaj_%3EA219035398%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921463419&rft_id=info:pmid/20092627&rft_galeid=A219035398&rfr_iscdi=true