Loading…
Genome-wide computational prediction of tandem gene arrays: application in yeasts
This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding...
Saved in:
Published in: | BMC genomics 2010-01, Vol.11 (1), p.56-56 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3 |
---|---|
cites | |
container_end_page | 56 |
container_issue | 1 |
container_start_page | 56 |
container_title | BMC genomics |
container_volume | 11 |
creator | Despons, Laurence Baret, Philippe V Frangeul, Lionel Louis, Véronique Leh Durrens, Pascal Souciet, Jean-Luc |
description | This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.
Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs.
The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters. |
doi_str_mv | 10.1186/1471-2164-11-56 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f1c4909bcdfe4f3e9ef1ed82c05ce608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A219035398</galeid><doaj_id>oai_doaj_org_article_f1c4909bcdfe4f3e9ef1ed82c05ce608</doaj_id><sourcerecordid>A219035398</sourcerecordid><originalsourceid>FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3</originalsourceid><addsrcrecordid>eNp9k01v1DAQhiMEoqVw5oYiOACHtP5I7JgD0lJBu9JKiK-z5TjjraskDnZS2H-P05RVUxXkg-3xM69H79hJ8hyjY4xLdoJzjjOCWZ5hnBXsQXK4jzy8tT5InoRwiRDmJSkeJwcEIUEY4YfJlzPoXAvZL1tDql3bj4MarOtUk_YeaqunTepMOqiuhjbdQgep8l7twrtU9X1j9TWf2i7dgQpDeJo8MqoJ8OxmPkp-fPr4_fQ823w-W5-uNlnFMRuyMlc5ZZTrilDIOeVgdKWVKSooUB3DFSZFyaGkYHLMGFZKI8GZEMARqRU9Stazbu3Upey9bZXfSaesvA44v5XKD1Y3IA3WuUCi0rWB3FAQYDDUJdGo0MBQGbXez1r9WLVQa-gGr5qF6PKksxdy664kKQnhLI8C2SxwcSftfLWRfbQFRi8RYhwxSq5w5D_MfGXdPy5cnsTWyKmdcmqnxFgWLIq8vqnau58jhEG2NmhoGtWBG4PklArKRD6Rb_5LYkRyxiglPKIv76CXbvTxPQQpCI5aORYRejVDWxXttZ1xsUg9acoVwQLRgorJ1eN7qDjiQ7LadWBsjC8S3i4SIjPA72GrxhDk-tvXJXsys9q7EDyYvXkYyelv3GPXi9tN3vN_PwP9A_NAB_c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921463419</pqid></control><display><type>article</type><title>Genome-wide computational prediction of tandem gene arrays: application in yeasts</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Despons, Laurence ; Baret, Philippe V ; Frangeul, Lionel ; Louis, Véronique Leh ; Durrens, Pascal ; Souciet, Jean-Luc</creator><creatorcontrib>Despons, Laurence ; Baret, Philippe V ; Frangeul, Lionel ; Louis, Véronique Leh ; Durrens, Pascal ; Souciet, Jean-Luc</creatorcontrib><description>This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.
Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs.
The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2164-11-56</identifier><identifier>PMID: 20092627</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Amino acid sequence ; Biochemistry, Molecular Biology ; Computational Biology ; Computational Biology - methods ; Computer applications ; Databases, Genetic ; DNA microarrays ; Evolution ; Evolution, Molecular ; Evolutionary genetics ; Gene clusters ; Gene conversion ; gene duplication ; Genes ; Genetic aspects ; Genome, Fungal ; Genomes ; Genomics ; Genomics - methods ; Life Sciences ; Methodology ; Methods ; Minisatellite Repeats ; Oligonucleotide Array Sequence Analysis ; Phylogeny ; Prokaryotes ; Sequence Analysis, DNA ; Yeast ; Yeast fungi ; Yeasts ; Yeasts - genetics</subject><ispartof>BMC genomics, 2010-01, Vol.11 (1), p.56-56</ispartof><rights>COPYRIGHT 2010 BioMed Central Ltd.</rights><rights>2010 Despons et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright ©2010 Despons et al; licensee BioMed Central Ltd. 2010 Despons et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3</citedby><orcidid>0000-0002-6189-666X ; 0000-0002-3948-7106 ; 0000-0002-0992-8775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822764/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/921463419?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20092627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-00670632$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Despons, Laurence</creatorcontrib><creatorcontrib>Baret, Philippe V</creatorcontrib><creatorcontrib>Frangeul, Lionel</creatorcontrib><creatorcontrib>Louis, Véronique Leh</creatorcontrib><creatorcontrib>Durrens, Pascal</creatorcontrib><creatorcontrib>Souciet, Jean-Luc</creatorcontrib><title>Genome-wide computational prediction of tandem gene arrays: application in yeasts</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.
Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs.
The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</description><subject>Algorithms</subject><subject>Amino acid sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Computational Biology</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Databases, Genetic</subject><subject>DNA microarrays</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene clusters</subject><subject>Gene conversion</subject><subject>gene duplication</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Life Sciences</subject><subject>Methodology</subject><subject>Methods</subject><subject>Minisatellite Repeats</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phylogeny</subject><subject>Prokaryotes</subject><subject>Sequence Analysis, DNA</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><subject>Yeasts - genetics</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9k01v1DAQhiMEoqVw5oYiOACHtP5I7JgD0lJBu9JKiK-z5TjjraskDnZS2H-P05RVUxXkg-3xM69H79hJ8hyjY4xLdoJzjjOCWZ5hnBXsQXK4jzy8tT5InoRwiRDmJSkeJwcEIUEY4YfJlzPoXAvZL1tDql3bj4MarOtUk_YeaqunTepMOqiuhjbdQgep8l7twrtU9X1j9TWf2i7dgQpDeJo8MqoJ8OxmPkp-fPr4_fQ823w-W5-uNlnFMRuyMlc5ZZTrilDIOeVgdKWVKSooUB3DFSZFyaGkYHLMGFZKI8GZEMARqRU9Stazbu3Upey9bZXfSaesvA44v5XKD1Y3IA3WuUCi0rWB3FAQYDDUJdGo0MBQGbXez1r9WLVQa-gGr5qF6PKksxdy664kKQnhLI8C2SxwcSftfLWRfbQFRi8RYhwxSq5w5D_MfGXdPy5cnsTWyKmdcmqnxFgWLIq8vqnau58jhEG2NmhoGtWBG4PklArKRD6Rb_5LYkRyxiglPKIv76CXbvTxPQQpCI5aORYRejVDWxXttZ1xsUg9acoVwQLRgorJ1eN7qDjiQ7LadWBsjC8S3i4SIjPA72GrxhDk-tvXJXsys9q7EDyYvXkYyelv3GPXi9tN3vN_PwP9A_NAB_c</recordid><startdate>20100121</startdate><enddate>20100121</enddate><creator>Despons, Laurence</creator><creator>Baret, Philippe V</creator><creator>Frangeul, Lionel</creator><creator>Louis, Véronique Leh</creator><creator>Durrens, Pascal</creator><creator>Souciet, Jean-Luc</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6189-666X</orcidid><orcidid>https://orcid.org/0000-0002-3948-7106</orcidid><orcidid>https://orcid.org/0000-0002-0992-8775</orcidid></search><sort><creationdate>20100121</creationdate><title>Genome-wide computational prediction of tandem gene arrays: application in yeasts</title><author>Despons, Laurence ; Baret, Philippe V ; Frangeul, Lionel ; Louis, Véronique Leh ; Durrens, Pascal ; Souciet, Jean-Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Amino acid sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Computational Biology</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Databases, Genetic</topic><topic>DNA microarrays</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene clusters</topic><topic>Gene conversion</topic><topic>gene duplication</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Life Sciences</topic><topic>Methodology</topic><topic>Methods</topic><topic>Minisatellite Repeats</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phylogeny</topic><topic>Prokaryotes</topic><topic>Sequence Analysis, DNA</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Despons, Laurence</creatorcontrib><creatorcontrib>Baret, Philippe V</creatorcontrib><creatorcontrib>Frangeul, Lionel</creatorcontrib><creatorcontrib>Louis, Véronique Leh</creatorcontrib><creatorcontrib>Durrens, Pascal</creatorcontrib><creatorcontrib>Souciet, Jean-Luc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Despons, Laurence</au><au>Baret, Philippe V</au><au>Frangeul, Lionel</au><au>Louis, Véronique Leh</au><au>Durrens, Pascal</au><au>Souciet, Jean-Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide computational prediction of tandem gene arrays: application in yeasts</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2010-01-21</date><risdate>2010</risdate><volume>11</volume><issue>1</issue><spage>56</spage><epage>56</epage><pages>56-56</pages><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.
Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs. The frequency of TGAs with degenerated gene copies means that a significant fraction of tandem duplicated genes follows the birth-and-death model of evolution. A comparison of sequence identity distributions between sets of homologous gene pairs shows that the different copies of tandem arrayed paralogs are less divergent than copies of dispersed paralogs in yeast genomes. It suggests that paralogs included in tandem structures are more recent or more subject to the gene conversion mechanism than other paralogs.
The method reported here is a useful computational tool to provide a database of TGAs composed of functional or nonfunctional gene copies. Such a database has obvious applications in the fields of structural and comparative genomics. Notably, a detailed study of the TGA catalog will make it possible to tackle the fundamental questions of the origin and evolution of tandem gene clusters.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>20092627</pmid><doi>10.1186/1471-2164-11-56</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6189-666X</orcidid><orcidid>https://orcid.org/0000-0002-3948-7106</orcidid><orcidid>https://orcid.org/0000-0002-0992-8775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2010-01, Vol.11 (1), p.56-56 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f1c4909bcdfe4f3e9ef1ed82c05ce608 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access) |
subjects | Algorithms Amino acid sequence Biochemistry, Molecular Biology Computational Biology Computational Biology - methods Computer applications Databases, Genetic DNA microarrays Evolution Evolution, Molecular Evolutionary genetics Gene clusters Gene conversion gene duplication Genes Genetic aspects Genome, Fungal Genomes Genomics Genomics - methods Life Sciences Methodology Methods Minisatellite Repeats Oligonucleotide Array Sequence Analysis Phylogeny Prokaryotes Sequence Analysis, DNA Yeast Yeast fungi Yeasts Yeasts - genetics |
title | Genome-wide computational prediction of tandem gene arrays: application in yeasts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20computational%20prediction%20of%20tandem%20gene%20arrays:%20application%20in%20yeasts&rft.jtitle=BMC%20genomics&rft.au=Despons,%20Laurence&rft.date=2010-01-21&rft.volume=11&rft.issue=1&rft.spage=56&rft.epage=56&rft.pages=56-56&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/1471-2164-11-56&rft_dat=%3Cgale_doaj_%3EA219035398%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b716t-84a43637cb23e4737efcbcaf5be50d7cbb12587e83ef41661aac097699e702da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=921463419&rft_id=info:pmid/20092627&rft_galeid=A219035398&rfr_iscdi=true |