Loading…

Mucins Help to Avoid Alloreactivity at the Maternal Fetal Interface

During gestation, many different mechanisms act to render the maternal immune system tolerant to semi-allogeneic trophoblast cells of foetal origin, including those mediated via mucins that are expressed during the peri-implantation period in the uterus. Tumour- associated glycoprotein-72 (TAG-72) e...

Full description

Saved in:
Bibliographic Details
Published in:Clinical & developmental immunology 2013-01, Vol.2013 (2013), p.1-9
Main Authors: Haller, Herman, Dominovic, Marin, Laskarin, Gordana, Redzovic, Arnela, Rukavina, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During gestation, many different mechanisms act to render the maternal immune system tolerant to semi-allogeneic trophoblast cells of foetal origin, including those mediated via mucins that are expressed during the peri-implantation period in the uterus. Tumour- associated glycoprotein-72 (TAG-72) enhances the already established tolerogenic features of decidual dendritic cells with the inability to progress towards Th1 immune orientation due to lowered interferon (IFN)-γ and interleukin (IL)-15 expression. Mucine 1 (Muc 1) supports alternative activation of decidual macrophages, restricts the proliferation of decidual regulatory CD56+ bright natural killer (NK) cells, and downregulates their cytotoxic potential, including cytotoxic mediator protein expression. Removing TAG-72 and Muc 1 from the eutopic implantation site likely contributes to better control of trophoblast invasion by T cells and NK cells and appears to have important immunologic advantages for successful implantation, in addition to mechanical advantages. However, these processes may lead to uncontrolled trophoblast growth after implantation, inefficient defence against infection or tumours, and elimination of unwanted immunocompetent cells at the maternal-foetal interface. The use of mucins by tumour cells to affect the local microenvironment in order to avoid the host immune response and to promote local tumour growth, invasion, and metastasis confirms this postulation.
ISSN:2314-8861
1740-2522
2314-7156
1740-2530
DOI:10.1155/2013/542152