Loading…

On the influence of density and morphology on the Urban Heat Island intensity

The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities, specially during heat waves. We simulate the urban climate of various generated cities under the same weather cond...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-05, Vol.11 (1), p.2647-2647, Article 2647
Main Authors: Li, Yunfei, Schubert, Sebastian, Kropp, Jürgen P., Rybski, Diego
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities, specially during heat waves. We simulate the urban climate of various generated cities under the same weather conditions. For mono-centric cities, we propose a linear combination of logarithmic city area and logarithmic gross building volume, which also captures the influence of building density. By studying various city shapes, we generalise and propose a reduced form to estimate UHI intensities based only on the structure of urban sites, as well as their relative distances. We conclude that in addition to the size, the UHI intensity of a city is directly related to the density and an amplifying effect that urban sites have on each other. Our approach can serve as a UHI rule of thumb for the comparison of urban development scenarios. How UHI intensity responds to variations of urban structure is unclear. Here the authors proposed a reduced form approach that is able to estimate UHI intensities based only on the number and location of urban sites as well as their distance.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16461-9