Loading…

An in vitro model of human neocortical development using pluripotent stem cells: cocaine-induced cytoarchitectural alterations

Neocortical development involves ordered specification of forebrain cortical progenitors to various neuronal subtypes, ultimately forming the layered cortical structure. Modeling of this process using human pluripotent stem cells (hPSCs) would enable mechanistic studies of human neocortical developm...

Full description

Saved in:
Bibliographic Details
Published in:Disease models & mechanisms 2014-12, Vol.7 (12), p.1397-1405
Main Authors: Kindberg, Abigail A, Bendriem, Raphael M, Spivak, Charles E, Chen, Jia, Handreck, Annelie, Lupica, Carl R, Liu, Jinny, Freed, William J, Lee, Chun-Ting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-2d3b21e013abda90fe999f1a2c38981ba84ffc91c80f78af37d141bec47912a03
cites cdi_FETCH-LOGICAL-c436t-2d3b21e013abda90fe999f1a2c38981ba84ffc91c80f78af37d141bec47912a03
container_end_page 1405
container_issue 12
container_start_page 1397
container_title Disease models & mechanisms
container_volume 7
creator Kindberg, Abigail A
Bendriem, Raphael M
Spivak, Charles E
Chen, Jia
Handreck, Annelie
Lupica, Carl R
Liu, Jinny
Freed, William J
Lee, Chun-Ting
description Neocortical development involves ordered specification of forebrain cortical progenitors to various neuronal subtypes, ultimately forming the layered cortical structure. Modeling of this process using human pluripotent stem cells (hPSCs) would enable mechanistic studies of human neocortical development, while providing new avenues for exploration of developmental neocortical abnormalities. Here, we show that preserving hPSCs aggregates - allowing embryoid body formation - while adding basic fibroblast growth factor (bFGF) during neuroepithelial development generates neural rosettes showing dorsal forebrain identity, including Mash1(+) dorsal telencephalic GABAergic progenitors. Structures that mirrored the organization of the cerebral cortex formed after rosettes were seeded and cultured for 3 weeks in the presence of FGF18, BDNF and NT3. Neurons migrated along radial glia scaffolding, with deep-layer CTIP2(+) cortical neurons appearing after 1 week and upper-layer SATB2(+) cortical neurons forming during the second and third weeks. At the end of differentiation, these structures contained both glutamatergic and GABAergic neurons, with glutamatergic neurons being most abundant. Thus, this differentiation protocol generated an hPSC-based model that exhibits temporal patterning and a neuronal subtype ratio similar to that of the developing human neocortex. This model was used to examine the effects of cocaine during neocorticogenesis. Cocaine caused premature neuronal differentiation and enhanced neurogenesis of various cortical neuronal subtypes. These cocaine-induced changes were inhibited by the cytochrome P450 inhibitor cimetidine. This in vitro model enables mechanistic studies of neocorticogenesis, and can be used to examine the mechanisms through which cocaine alters the development of the human neocortex.
doi_str_mv 10.1242/dmm.017251
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f1e077aab17c47938a76f57a7c47904a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f1e077aab17c47938a76f57a7c47904a</doaj_id><sourcerecordid>2688529972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-2d3b21e013abda90fe999f1a2c38981ba84ffc91c80f78af37d141bec47912a03</originalsourceid><addsrcrecordid>eNpVkUtv1DAUhSMEoqWw4QcgS-yQUvxIYpsFUlVBqVSJDaytGz9mPErsYDsjdcNvx9Mpo3Zl-_r4u_f4NM17gi8J7ehnM8-XmHDakxfNOeF914qOkJenPWZnzZucdxgPVDD5ujmjPRViEPS8-XsVkA9o70uKaI7GTig6tF1nCCjYqGMqXsOEjN3bKS6zDQWt2YcNWqY1-SWWQyUXOyNtpyl_QTpq8MG2PphVW4P0fYmQ9NYXq8uaKgumYhMUH0N-27xyMGX77nG9aH5___br-kd79_Pm9vrqrtUdG0pLDRspsZgwGA1I7KyU0hGgmgkpyAiic05LogV2XIBj3JCOjFZ3XBIKmF00t0euibBTS_IzpHsVwauHQkwbBQenk1Wu9uEcYCT88JwJ4IPrOTyccAeV9fXIWtZxtkbXD6iunkGf3wS_VZu4Vx3tOcaiAj4-AlL8s9pc1C6uKVT_ig5C9FRKTqvq01GlU8w5WXfqQLA65K5q7uqYexV_eDrTSfo_aPYPIrKspg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688529972</pqid></control><display><type>article</type><title>An in vitro model of human neocortical development using pluripotent stem cells: cocaine-induced cytoarchitectural alterations</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kindberg, Abigail A ; Bendriem, Raphael M ; Spivak, Charles E ; Chen, Jia ; Handreck, Annelie ; Lupica, Carl R ; Liu, Jinny ; Freed, William J ; Lee, Chun-Ting</creator><creatorcontrib>Kindberg, Abigail A ; Bendriem, Raphael M ; Spivak, Charles E ; Chen, Jia ; Handreck, Annelie ; Lupica, Carl R ; Liu, Jinny ; Freed, William J ; Lee, Chun-Ting</creatorcontrib><description>Neocortical development involves ordered specification of forebrain cortical progenitors to various neuronal subtypes, ultimately forming the layered cortical structure. Modeling of this process using human pluripotent stem cells (hPSCs) would enable mechanistic studies of human neocortical development, while providing new avenues for exploration of developmental neocortical abnormalities. Here, we show that preserving hPSCs aggregates - allowing embryoid body formation - while adding basic fibroblast growth factor (bFGF) during neuroepithelial development generates neural rosettes showing dorsal forebrain identity, including Mash1(+) dorsal telencephalic GABAergic progenitors. Structures that mirrored the organization of the cerebral cortex formed after rosettes were seeded and cultured for 3 weeks in the presence of FGF18, BDNF and NT3. Neurons migrated along radial glia scaffolding, with deep-layer CTIP2(+) cortical neurons appearing after 1 week and upper-layer SATB2(+) cortical neurons forming during the second and third weeks. At the end of differentiation, these structures contained both glutamatergic and GABAergic neurons, with glutamatergic neurons being most abundant. Thus, this differentiation protocol generated an hPSC-based model that exhibits temporal patterning and a neuronal subtype ratio similar to that of the developing human neocortex. This model was used to examine the effects of cocaine during neocorticogenesis. Cocaine caused premature neuronal differentiation and enhanced neurogenesis of various cortical neuronal subtypes. These cocaine-induced changes were inhibited by the cytochrome P450 inhibitor cimetidine. This in vitro model enables mechanistic studies of neocorticogenesis, and can be used to examine the mechanisms through which cocaine alters the development of the human neocortex.</description><identifier>ISSN: 1754-8403</identifier><identifier>EISSN: 1754-8411</identifier><identifier>DOI: 10.1242/dmm.017251</identifier><identifier>PMID: 25288682</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Cell Differentiation ; Cell Line ; Cerebral Cortex - embryology ; Cocaine ; Cocaine - chemistry ; Cytochrome ; Dopamine Uptake Inhibitors - chemistry ; Dorsal forebrain model ; Fibroblast Growth Factor 2 - metabolism ; hPSCs ; Humans ; Immunohistochemistry ; Mammals ; Metabolism ; Neocortical development ; Neurogenesis ; Neurons ; Neurons - metabolism ; Oxidative stress ; Pluripotent Stem Cells - cytology ; Premature neuronal differentiation ; Prosencephalon - embryology ; Reactive Oxygen Species ; Resource ; Stem cells ; Stem Cells - metabolism</subject><ispartof>Disease models &amp; mechanisms, 2014-12, Vol.7 (12), p.1397-1405</ispartof><rights>2014. Published by The Company of Biologists Ltd.</rights><rights>2014. This work is licensed under http://creativecommons.org/licenses/by/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014. Published by The Company of Biologists Ltd 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-2d3b21e013abda90fe999f1a2c38981ba84ffc91c80f78af37d141bec47912a03</citedby><cites>FETCH-LOGICAL-c436t-2d3b21e013abda90fe999f1a2c38981ba84ffc91c80f78af37d141bec47912a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2688529972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2688529972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kindberg, Abigail A</creatorcontrib><creatorcontrib>Bendriem, Raphael M</creatorcontrib><creatorcontrib>Spivak, Charles E</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Handreck, Annelie</creatorcontrib><creatorcontrib>Lupica, Carl R</creatorcontrib><creatorcontrib>Liu, Jinny</creatorcontrib><creatorcontrib>Freed, William J</creatorcontrib><creatorcontrib>Lee, Chun-Ting</creatorcontrib><title>An in vitro model of human neocortical development using pluripotent stem cells: cocaine-induced cytoarchitectural alterations</title><title>Disease models &amp; mechanisms</title><addtitle>Dis Model Mech</addtitle><description>Neocortical development involves ordered specification of forebrain cortical progenitors to various neuronal subtypes, ultimately forming the layered cortical structure. Modeling of this process using human pluripotent stem cells (hPSCs) would enable mechanistic studies of human neocortical development, while providing new avenues for exploration of developmental neocortical abnormalities. Here, we show that preserving hPSCs aggregates - allowing embryoid body formation - while adding basic fibroblast growth factor (bFGF) during neuroepithelial development generates neural rosettes showing dorsal forebrain identity, including Mash1(+) dorsal telencephalic GABAergic progenitors. Structures that mirrored the organization of the cerebral cortex formed after rosettes were seeded and cultured for 3 weeks in the presence of FGF18, BDNF and NT3. Neurons migrated along radial glia scaffolding, with deep-layer CTIP2(+) cortical neurons appearing after 1 week and upper-layer SATB2(+) cortical neurons forming during the second and third weeks. At the end of differentiation, these structures contained both glutamatergic and GABAergic neurons, with glutamatergic neurons being most abundant. Thus, this differentiation protocol generated an hPSC-based model that exhibits temporal patterning and a neuronal subtype ratio similar to that of the developing human neocortex. This model was used to examine the effects of cocaine during neocorticogenesis. Cocaine caused premature neuronal differentiation and enhanced neurogenesis of various cortical neuronal subtypes. These cocaine-induced changes were inhibited by the cytochrome P450 inhibitor cimetidine. This in vitro model enables mechanistic studies of neocorticogenesis, and can be used to examine the mechanisms through which cocaine alters the development of the human neocortex.</description><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cerebral Cortex - embryology</subject><subject>Cocaine</subject><subject>Cocaine - chemistry</subject><subject>Cytochrome</subject><subject>Dopamine Uptake Inhibitors - chemistry</subject><subject>Dorsal forebrain model</subject><subject>Fibroblast Growth Factor 2 - metabolism</subject><subject>hPSCs</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Mammals</subject><subject>Metabolism</subject><subject>Neocortical development</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Oxidative stress</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Premature neuronal differentiation</subject><subject>Prosencephalon - embryology</subject><subject>Reactive Oxygen Species</subject><subject>Resource</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><issn>1754-8403</issn><issn>1754-8411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtv1DAUhSMEoqWw4QcgS-yQUvxIYpsFUlVBqVSJDaytGz9mPErsYDsjdcNvx9Mpo3Zl-_r4u_f4NM17gi8J7ehnM8-XmHDakxfNOeF914qOkJenPWZnzZucdxgPVDD5ujmjPRViEPS8-XsVkA9o70uKaI7GTig6tF1nCCjYqGMqXsOEjN3bKS6zDQWt2YcNWqY1-SWWQyUXOyNtpyl_QTpq8MG2PphVW4P0fYmQ9NYXq8uaKgumYhMUH0N-27xyMGX77nG9aH5___br-kd79_Pm9vrqrtUdG0pLDRspsZgwGA1I7KyU0hGgmgkpyAiic05LogV2XIBj3JCOjFZ3XBIKmF00t0euibBTS_IzpHsVwauHQkwbBQenk1Wu9uEcYCT88JwJ4IPrOTyccAeV9fXIWtZxtkbXD6iunkGf3wS_VZu4Vx3tOcaiAj4-AlL8s9pc1C6uKVT_ig5C9FRKTqvq01GlU8w5WXfqQLA65K5q7uqYexV_eDrTSfo_aPYPIrKspg</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kindberg, Abigail A</creator><creator>Bendriem, Raphael M</creator><creator>Spivak, Charles E</creator><creator>Chen, Jia</creator><creator>Handreck, Annelie</creator><creator>Lupica, Carl R</creator><creator>Liu, Jinny</creator><creator>Freed, William J</creator><creator>Lee, Chun-Ting</creator><general>The Company of Biologists Ltd</general><general>The Company of Biologists Limited</general><general>The Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141201</creationdate><title>An in vitro model of human neocortical development using pluripotent stem cells: cocaine-induced cytoarchitectural alterations</title><author>Kindberg, Abigail A ; Bendriem, Raphael M ; Spivak, Charles E ; Chen, Jia ; Handreck, Annelie ; Lupica, Carl R ; Liu, Jinny ; Freed, William J ; Lee, Chun-Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-2d3b21e013abda90fe999f1a2c38981ba84ffc91c80f78af37d141bec47912a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cerebral Cortex - embryology</topic><topic>Cocaine</topic><topic>Cocaine - chemistry</topic><topic>Cytochrome</topic><topic>Dopamine Uptake Inhibitors - chemistry</topic><topic>Dorsal forebrain model</topic><topic>Fibroblast Growth Factor 2 - metabolism</topic><topic>hPSCs</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Mammals</topic><topic>Metabolism</topic><topic>Neocortical development</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Oxidative stress</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Premature neuronal differentiation</topic><topic>Prosencephalon - embryology</topic><topic>Reactive Oxygen Species</topic><topic>Resource</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kindberg, Abigail A</creatorcontrib><creatorcontrib>Bendriem, Raphael M</creatorcontrib><creatorcontrib>Spivak, Charles E</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><creatorcontrib>Handreck, Annelie</creatorcontrib><creatorcontrib>Lupica, Carl R</creatorcontrib><creatorcontrib>Liu, Jinny</creatorcontrib><creatorcontrib>Freed, William J</creatorcontrib><creatorcontrib>Lee, Chun-Ting</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Disease models &amp; mechanisms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kindberg, Abigail A</au><au>Bendriem, Raphael M</au><au>Spivak, Charles E</au><au>Chen, Jia</au><au>Handreck, Annelie</au><au>Lupica, Carl R</au><au>Liu, Jinny</au><au>Freed, William J</au><au>Lee, Chun-Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in vitro model of human neocortical development using pluripotent stem cells: cocaine-induced cytoarchitectural alterations</atitle><jtitle>Disease models &amp; mechanisms</jtitle><addtitle>Dis Model Mech</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>7</volume><issue>12</issue><spage>1397</spage><epage>1405</epage><pages>1397-1405</pages><issn>1754-8403</issn><eissn>1754-8411</eissn><abstract>Neocortical development involves ordered specification of forebrain cortical progenitors to various neuronal subtypes, ultimately forming the layered cortical structure. Modeling of this process using human pluripotent stem cells (hPSCs) would enable mechanistic studies of human neocortical development, while providing new avenues for exploration of developmental neocortical abnormalities. Here, we show that preserving hPSCs aggregates - allowing embryoid body formation - while adding basic fibroblast growth factor (bFGF) during neuroepithelial development generates neural rosettes showing dorsal forebrain identity, including Mash1(+) dorsal telencephalic GABAergic progenitors. Structures that mirrored the organization of the cerebral cortex formed after rosettes were seeded and cultured for 3 weeks in the presence of FGF18, BDNF and NT3. Neurons migrated along radial glia scaffolding, with deep-layer CTIP2(+) cortical neurons appearing after 1 week and upper-layer SATB2(+) cortical neurons forming during the second and third weeks. At the end of differentiation, these structures contained both glutamatergic and GABAergic neurons, with glutamatergic neurons being most abundant. Thus, this differentiation protocol generated an hPSC-based model that exhibits temporal patterning and a neuronal subtype ratio similar to that of the developing human neocortex. This model was used to examine the effects of cocaine during neocorticogenesis. Cocaine caused premature neuronal differentiation and enhanced neurogenesis of various cortical neuronal subtypes. These cocaine-induced changes were inhibited by the cytochrome P450 inhibitor cimetidine. This in vitro model enables mechanistic studies of neocorticogenesis, and can be used to examine the mechanisms through which cocaine alters the development of the human neocortex.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>25288682</pmid><doi>10.1242/dmm.017251</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-8403
ispartof Disease models & mechanisms, 2014-12, Vol.7 (12), p.1397-1405
issn 1754-8403
1754-8411
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f1e077aab17c47938a76f57a7c47904a
source Publicly Available Content Database; PubMed Central
subjects Cell Differentiation
Cell Line
Cerebral Cortex - embryology
Cocaine
Cocaine - chemistry
Cytochrome
Dopamine Uptake Inhibitors - chemistry
Dorsal forebrain model
Fibroblast Growth Factor 2 - metabolism
hPSCs
Humans
Immunohistochemistry
Mammals
Metabolism
Neocortical development
Neurogenesis
Neurons
Neurons - metabolism
Oxidative stress
Pluripotent Stem Cells - cytology
Premature neuronal differentiation
Prosencephalon - embryology
Reactive Oxygen Species
Resource
Stem cells
Stem Cells - metabolism
title An in vitro model of human neocortical development using pluripotent stem cells: cocaine-induced cytoarchitectural alterations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in%20vitro%20model%20of%20human%20neocortical%20development%20using%20pluripotent%20stem%20cells:%20cocaine-induced%20cytoarchitectural%20alterations&rft.jtitle=Disease%20models%20&%20mechanisms&rft.au=Kindberg,%20Abigail%20A&rft.date=2014-12-01&rft.volume=7&rft.issue=12&rft.spage=1397&rft.epage=1405&rft.pages=1397-1405&rft.issn=1754-8403&rft.eissn=1754-8411&rft_id=info:doi/10.1242/dmm.017251&rft_dat=%3Cproquest_doaj_%3E2688529972%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-2d3b21e013abda90fe999f1a2c38981ba84ffc91c80f78af37d141bec47912a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688529972&rft_id=info:pmid/25288682&rfr_iscdi=true