Loading…
Hybrid Spider Silk with Inorganic Nanomaterials
High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-09, Vol.10 (9), p.1853 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3 |
container_end_page | |
container_issue | 9 |
container_start_page | 1853 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 10 |
creator | Kiseleva, Aleksandra P. Kiselev, Grigorii O. Nikolaeva, Valeria O. Seisenbaeva, Gulaim Kessler, Vadim Krivoshapkin, Pavel V. Krivoshapkina, Elena F. |
description | High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing. |
doi_str_mv | 10.3390/nano10091853 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f204ae5a92544e6197665035de028d30</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f204ae5a92544e6197665035de028d30</doaj_id><sourcerecordid>2677289855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</originalsourceid><addsrcrecordid>eNpdkk9P3DAQxaOqqCDg1g8QqZceujD-m8ylUoXashJqD8DZcuwJeJuNt3YC4tvXyyLE9vQsz--9GVtTVR8ZnAmBcD7aMTIAZK0S76ojDg0uJCJ7_-Z8WJ3mvALYYqJwH6pDwVE2qORRdX751KXg6-tN8JTq6zD8qR_DdF8vx5ju7Bhc_av0WNuJUrBDPqkO-iJ0-qLH1e2P7zcXl4ur3z-XF9-uFk6inBaomMNOaKY1Z1pCQ0oDMCn61vdOeyfI6YZ1CL0WgpHwKECB18RaZ0v5uFrucn20K7NJYW3Tk4k2mOeLMpuxaQpuINNzkJaURa6kJM2w0VqBUJ6At15AyTrbZeVH2szdXloe5s6mrZhMhgEC48XwdWco9Jq8o3FKdtjz7VfGcG_u4oNplEKUrAR8fglI8e9MeTLrkB0Ngx0pztlwKaVoy8t1QT_9h67inMbyt4brpuEttkoV6suOcinmnKh_HYaB2W6CebsJ4h9pg6Lk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677289855</pqid></control><display><type>article</type><title>Hybrid Spider Silk with Inorganic Nanomaterials</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kiseleva, Aleksandra P. ; Kiselev, Grigorii O. ; Nikolaeva, Valeria O. ; Seisenbaeva, Gulaim ; Kessler, Vadim ; Krivoshapkin, Pavel V. ; Krivoshapkina, Elena F.</creator><creatorcontrib>Kiseleva, Aleksandra P. ; Kiselev, Grigorii O. ; Nikolaeva, Valeria O. ; Seisenbaeva, Gulaim ; Kessler, Vadim ; Krivoshapkin, Pavel V. ; Krivoshapkina, Elena F. ; Sveriges lantbruksuniversitet</creatorcontrib><description>High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10091853</identifier><identifier>PMID: 32947954</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arthropods ; Bio Materials ; Biocompatibility ; Biodegradability ; Biodegradation ; Biomaterial ; Biomaterials ; Biomedical materials ; Biopolymers ; carbon nanotubes ; functional materials ; hybrids ; Inorganic compounds ; inorganic nanoparticles ; Mechanical properties ; Metal oxides ; Morphology ; Nano-technology ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanoteknik ; Optics ; Polymers ; Proteins ; quantum dots ; R&D ; Regeneration (physiology) ; Research & development ; Review ; Silk ; spider silk ; Spiders ; Tensile strength ; Textiles ; Three dimensional printing ; Tissue engineering</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-09, Vol.10 (9), p.1853</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</citedby><cites>FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</cites><orcidid>0000-0001-6981-5134 ; 0000-0003-0072-6082 ; 0000-0001-7570-2814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2677289855/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2677289855?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/109012$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiseleva, Aleksandra P.</creatorcontrib><creatorcontrib>Kiselev, Grigorii O.</creatorcontrib><creatorcontrib>Nikolaeva, Valeria O.</creatorcontrib><creatorcontrib>Seisenbaeva, Gulaim</creatorcontrib><creatorcontrib>Kessler, Vadim</creatorcontrib><creatorcontrib>Krivoshapkin, Pavel V.</creatorcontrib><creatorcontrib>Krivoshapkina, Elena F.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Hybrid Spider Silk with Inorganic Nanomaterials</title><title>Nanomaterials (Basel, Switzerland)</title><description>High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.</description><subject>Arthropods</subject><subject>Bio Materials</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomaterial</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>carbon nanotubes</subject><subject>functional materials</subject><subject>hybrids</subject><subject>Inorganic compounds</subject><subject>inorganic nanoparticles</subject><subject>Mechanical properties</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nano-technology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanoteknik</subject><subject>Optics</subject><subject>Polymers</subject><subject>Proteins</subject><subject>quantum dots</subject><subject>R&D</subject><subject>Regeneration (physiology)</subject><subject>Research & development</subject><subject>Review</subject><subject>Silk</subject><subject>spider silk</subject><subject>Spiders</subject><subject>Tensile strength</subject><subject>Textiles</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9P3DAQxaOqqCDg1g8QqZceujD-m8ylUoXashJqD8DZcuwJeJuNt3YC4tvXyyLE9vQsz--9GVtTVR8ZnAmBcD7aMTIAZK0S76ojDg0uJCJ7_-Z8WJ3mvALYYqJwH6pDwVE2qORRdX751KXg6-tN8JTq6zD8qR_DdF8vx5ju7Bhc_av0WNuJUrBDPqkO-iJ0-qLH1e2P7zcXl4ur3z-XF9-uFk6inBaomMNOaKY1Z1pCQ0oDMCn61vdOeyfI6YZ1CL0WgpHwKECB18RaZ0v5uFrucn20K7NJYW3Tk4k2mOeLMpuxaQpuINNzkJaURa6kJM2w0VqBUJ6At15AyTrbZeVH2szdXloe5s6mrZhMhgEC48XwdWco9Jq8o3FKdtjz7VfGcG_u4oNplEKUrAR8fglI8e9MeTLrkB0Ngx0pztlwKaVoy8t1QT_9h67inMbyt4brpuEttkoV6suOcinmnKh_HYaB2W6CebsJ4h9pg6Lk</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Kiseleva, Aleksandra P.</creator><creator>Kiselev, Grigorii O.</creator><creator>Nikolaeva, Valeria O.</creator><creator>Seisenbaeva, Gulaim</creator><creator>Kessler, Vadim</creator><creator>Krivoshapkin, Pavel V.</creator><creator>Krivoshapkina, Elena F.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6981-5134</orcidid><orcidid>https://orcid.org/0000-0003-0072-6082</orcidid><orcidid>https://orcid.org/0000-0001-7570-2814</orcidid></search><sort><creationdate>20200916</creationdate><title>Hybrid Spider Silk with Inorganic Nanomaterials</title><author>Kiseleva, Aleksandra P. ; Kiselev, Grigorii O. ; Nikolaeva, Valeria O. ; Seisenbaeva, Gulaim ; Kessler, Vadim ; Krivoshapkin, Pavel V. ; Krivoshapkina, Elena F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arthropods</topic><topic>Bio Materials</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomaterial</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>carbon nanotubes</topic><topic>functional materials</topic><topic>hybrids</topic><topic>Inorganic compounds</topic><topic>inorganic nanoparticles</topic><topic>Mechanical properties</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nano-technology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanoteknik</topic><topic>Optics</topic><topic>Polymers</topic><topic>Proteins</topic><topic>quantum dots</topic><topic>R&D</topic><topic>Regeneration (physiology)</topic><topic>Research & development</topic><topic>Review</topic><topic>Silk</topic><topic>spider silk</topic><topic>Spiders</topic><topic>Tensile strength</topic><topic>Textiles</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiseleva, Aleksandra P.</creatorcontrib><creatorcontrib>Kiselev, Grigorii O.</creatorcontrib><creatorcontrib>Nikolaeva, Valeria O.</creatorcontrib><creatorcontrib>Seisenbaeva, Gulaim</creatorcontrib><creatorcontrib>Kessler, Vadim</creatorcontrib><creatorcontrib>Krivoshapkin, Pavel V.</creatorcontrib><creatorcontrib>Krivoshapkina, Elena F.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiseleva, Aleksandra P.</au><au>Kiselev, Grigorii O.</au><au>Nikolaeva, Valeria O.</au><au>Seisenbaeva, Gulaim</au><au>Kessler, Vadim</au><au>Krivoshapkin, Pavel V.</au><au>Krivoshapkina, Elena F.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Spider Silk with Inorganic Nanomaterials</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2020-09-16</date><risdate>2020</risdate><volume>10</volume><issue>9</issue><spage>1853</spage><pages>1853-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32947954</pmid><doi>10.3390/nano10091853</doi><orcidid>https://orcid.org/0000-0001-6981-5134</orcidid><orcidid>https://orcid.org/0000-0003-0072-6082</orcidid><orcidid>https://orcid.org/0000-0001-7570-2814</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2020-09, Vol.10 (9), p.1853 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f204ae5a92544e6197665035de028d30 |
source | Publicly Available Content Database; PubMed Central |
subjects | Arthropods Bio Materials Biocompatibility Biodegradability Biodegradation Biomaterial Biomaterials Biomedical materials Biopolymers carbon nanotubes functional materials hybrids Inorganic compounds inorganic nanoparticles Mechanical properties Metal oxides Morphology Nano-technology Nanomaterials Nanoparticles Nanotechnology Nanoteknik Optics Polymers Proteins quantum dots R&D Regeneration (physiology) Research & development Review Silk spider silk Spiders Tensile strength Textiles Three dimensional printing Tissue engineering |
title | Hybrid Spider Silk with Inorganic Nanomaterials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Spider%20Silk%20with%20Inorganic%20Nanomaterials&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Kiseleva,%20Aleksandra%20P.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-09-16&rft.volume=10&rft.issue=9&rft.spage=1853&rft.pages=1853-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10091853&rft_dat=%3Cproquest_doaj_%3E2677289855%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677289855&rft_id=info:pmid/32947954&rfr_iscdi=true |