Loading…

Hybrid Spider Silk with Inorganic Nanomaterials

High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-09, Vol.10 (9), p.1853
Main Authors: Kiseleva, Aleksandra P., Kiselev, Grigorii O., Nikolaeva, Valeria O., Seisenbaeva, Gulaim, Kessler, Vadim, Krivoshapkin, Pavel V., Krivoshapkina, Elena F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3
cites cdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3
container_end_page
container_issue 9
container_start_page 1853
container_title Nanomaterials (Basel, Switzerland)
container_volume 10
creator Kiseleva, Aleksandra P.
Kiselev, Grigorii O.
Nikolaeva, Valeria O.
Seisenbaeva, Gulaim
Kessler, Vadim
Krivoshapkin, Pavel V.
Krivoshapkina, Elena F.
description High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.
doi_str_mv 10.3390/nano10091853
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f204ae5a92544e6197665035de028d30</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f204ae5a92544e6197665035de028d30</doaj_id><sourcerecordid>2677289855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</originalsourceid><addsrcrecordid>eNpdkk9P3DAQxaOqqCDg1g8QqZceujD-m8ylUoXashJqD8DZcuwJeJuNt3YC4tvXyyLE9vQsz--9GVtTVR8ZnAmBcD7aMTIAZK0S76ojDg0uJCJ7_-Z8WJ3mvALYYqJwH6pDwVE2qORRdX751KXg6-tN8JTq6zD8qR_DdF8vx5ju7Bhc_av0WNuJUrBDPqkO-iJ0-qLH1e2P7zcXl4ur3z-XF9-uFk6inBaomMNOaKY1Z1pCQ0oDMCn61vdOeyfI6YZ1CL0WgpHwKECB18RaZ0v5uFrucn20K7NJYW3Tk4k2mOeLMpuxaQpuINNzkJaURa6kJM2w0VqBUJ6At15AyTrbZeVH2szdXloe5s6mrZhMhgEC48XwdWco9Jq8o3FKdtjz7VfGcG_u4oNplEKUrAR8fglI8e9MeTLrkB0Ngx0pztlwKaVoy8t1QT_9h67inMbyt4brpuEttkoV6suOcinmnKh_HYaB2W6CebsJ4h9pg6Lk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677289855</pqid></control><display><type>article</type><title>Hybrid Spider Silk with Inorganic Nanomaterials</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kiseleva, Aleksandra P. ; Kiselev, Grigorii O. ; Nikolaeva, Valeria O. ; Seisenbaeva, Gulaim ; Kessler, Vadim ; Krivoshapkin, Pavel V. ; Krivoshapkina, Elena F.</creator><creatorcontrib>Kiseleva, Aleksandra P. ; Kiselev, Grigorii O. ; Nikolaeva, Valeria O. ; Seisenbaeva, Gulaim ; Kessler, Vadim ; Krivoshapkin, Pavel V. ; Krivoshapkina, Elena F. ; Sveriges lantbruksuniversitet</creatorcontrib><description>High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10091853</identifier><identifier>PMID: 32947954</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arthropods ; Bio Materials ; Biocompatibility ; Biodegradability ; Biodegradation ; Biomaterial ; Biomaterials ; Biomedical materials ; Biopolymers ; carbon nanotubes ; functional materials ; hybrids ; Inorganic compounds ; inorganic nanoparticles ; Mechanical properties ; Metal oxides ; Morphology ; Nano-technology ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nanoteknik ; Optics ; Polymers ; Proteins ; quantum dots ; R&amp;D ; Regeneration (physiology) ; Research &amp; development ; Review ; Silk ; spider silk ; Spiders ; Tensile strength ; Textiles ; Three dimensional printing ; Tissue engineering</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-09, Vol.10 (9), p.1853</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</citedby><cites>FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</cites><orcidid>0000-0001-6981-5134 ; 0000-0003-0072-6082 ; 0000-0001-7570-2814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2677289855/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2677289855?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/109012$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiseleva, Aleksandra P.</creatorcontrib><creatorcontrib>Kiselev, Grigorii O.</creatorcontrib><creatorcontrib>Nikolaeva, Valeria O.</creatorcontrib><creatorcontrib>Seisenbaeva, Gulaim</creatorcontrib><creatorcontrib>Kessler, Vadim</creatorcontrib><creatorcontrib>Krivoshapkin, Pavel V.</creatorcontrib><creatorcontrib>Krivoshapkina, Elena F.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Hybrid Spider Silk with Inorganic Nanomaterials</title><title>Nanomaterials (Basel, Switzerland)</title><description>High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.</description><subject>Arthropods</subject><subject>Bio Materials</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomaterial</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>carbon nanotubes</subject><subject>functional materials</subject><subject>hybrids</subject><subject>Inorganic compounds</subject><subject>inorganic nanoparticles</subject><subject>Mechanical properties</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nano-technology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanoteknik</subject><subject>Optics</subject><subject>Polymers</subject><subject>Proteins</subject><subject>quantum dots</subject><subject>R&amp;D</subject><subject>Regeneration (physiology)</subject><subject>Research &amp; development</subject><subject>Review</subject><subject>Silk</subject><subject>spider silk</subject><subject>Spiders</subject><subject>Tensile strength</subject><subject>Textiles</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk9P3DAQxaOqqCDg1g8QqZceujD-m8ylUoXashJqD8DZcuwJeJuNt3YC4tvXyyLE9vQsz--9GVtTVR8ZnAmBcD7aMTIAZK0S76ojDg0uJCJ7_-Z8WJ3mvALYYqJwH6pDwVE2qORRdX751KXg6-tN8JTq6zD8qR_DdF8vx5ju7Bhc_av0WNuJUrBDPqkO-iJ0-qLH1e2P7zcXl4ur3z-XF9-uFk6inBaomMNOaKY1Z1pCQ0oDMCn61vdOeyfI6YZ1CL0WgpHwKECB18RaZ0v5uFrucn20K7NJYW3Tk4k2mOeLMpuxaQpuINNzkJaURa6kJM2w0VqBUJ6At15AyTrbZeVH2szdXloe5s6mrZhMhgEC48XwdWco9Jq8o3FKdtjz7VfGcG_u4oNplEKUrAR8fglI8e9MeTLrkB0Ngx0pztlwKaVoy8t1QT_9h67inMbyt4brpuEttkoV6suOcinmnKh_HYaB2W6CebsJ4h9pg6Lk</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Kiseleva, Aleksandra P.</creator><creator>Kiselev, Grigorii O.</creator><creator>Nikolaeva, Valeria O.</creator><creator>Seisenbaeva, Gulaim</creator><creator>Kessler, Vadim</creator><creator>Krivoshapkin, Pavel V.</creator><creator>Krivoshapkina, Elena F.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6981-5134</orcidid><orcidid>https://orcid.org/0000-0003-0072-6082</orcidid><orcidid>https://orcid.org/0000-0001-7570-2814</orcidid></search><sort><creationdate>20200916</creationdate><title>Hybrid Spider Silk with Inorganic Nanomaterials</title><author>Kiseleva, Aleksandra P. ; Kiselev, Grigorii O. ; Nikolaeva, Valeria O. ; Seisenbaeva, Gulaim ; Kessler, Vadim ; Krivoshapkin, Pavel V. ; Krivoshapkina, Elena F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arthropods</topic><topic>Bio Materials</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomaterial</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>carbon nanotubes</topic><topic>functional materials</topic><topic>hybrids</topic><topic>Inorganic compounds</topic><topic>inorganic nanoparticles</topic><topic>Mechanical properties</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nano-technology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanoteknik</topic><topic>Optics</topic><topic>Polymers</topic><topic>Proteins</topic><topic>quantum dots</topic><topic>R&amp;D</topic><topic>Regeneration (physiology)</topic><topic>Research &amp; development</topic><topic>Review</topic><topic>Silk</topic><topic>spider silk</topic><topic>Spiders</topic><topic>Tensile strength</topic><topic>Textiles</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiseleva, Aleksandra P.</creatorcontrib><creatorcontrib>Kiselev, Grigorii O.</creatorcontrib><creatorcontrib>Nikolaeva, Valeria O.</creatorcontrib><creatorcontrib>Seisenbaeva, Gulaim</creatorcontrib><creatorcontrib>Kessler, Vadim</creatorcontrib><creatorcontrib>Krivoshapkin, Pavel V.</creatorcontrib><creatorcontrib>Krivoshapkina, Elena F.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiseleva, Aleksandra P.</au><au>Kiselev, Grigorii O.</au><au>Nikolaeva, Valeria O.</au><au>Seisenbaeva, Gulaim</au><au>Kessler, Vadim</au><au>Krivoshapkin, Pavel V.</au><au>Krivoshapkina, Elena F.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Spider Silk with Inorganic Nanomaterials</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2020-09-16</date><risdate>2020</risdate><volume>10</volume><issue>9</issue><spage>1853</spage><pages>1853-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32947954</pmid><doi>10.3390/nano10091853</doi><orcidid>https://orcid.org/0000-0001-6981-5134</orcidid><orcidid>https://orcid.org/0000-0003-0072-6082</orcidid><orcidid>https://orcid.org/0000-0001-7570-2814</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2020-09, Vol.10 (9), p.1853
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f204ae5a92544e6197665035de028d30
source Publicly Available Content Database; PubMed Central
subjects Arthropods
Bio Materials
Biocompatibility
Biodegradability
Biodegradation
Biomaterial
Biomaterials
Biomedical materials
Biopolymers
carbon nanotubes
functional materials
hybrids
Inorganic compounds
inorganic nanoparticles
Mechanical properties
Metal oxides
Morphology
Nano-technology
Nanomaterials
Nanoparticles
Nanotechnology
Nanoteknik
Optics
Polymers
Proteins
quantum dots
R&D
Regeneration (physiology)
Research & development
Review
Silk
spider silk
Spiders
Tensile strength
Textiles
Three dimensional printing
Tissue engineering
title Hybrid Spider Silk with Inorganic Nanomaterials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Spider%20Silk%20with%20Inorganic%20Nanomaterials&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Kiseleva,%20Aleksandra%20P.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-09-16&rft.volume=10&rft.issue=9&rft.spage=1853&rft.pages=1853-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10091853&rft_dat=%3Cproquest_doaj_%3E2677289855%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-951c9b36166216407e5600143f8dfc6dc3ec671b90f6331e3d93050d6e18cadc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677289855&rft_id=info:pmid/32947954&rfr_iscdi=true