Loading…
Technical note: Unsupervised classification of ozone profiles in UKESM1
The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coheren...
Saved in:
Published in: | Atmospheric chemistry and physics 2023-03, Vol.23 (6), p.3609-3627 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3 |
container_end_page | 3627 |
container_issue | 6 |
container_start_page | 3609 |
container_title | Atmospheric chemistry and physics |
container_volume | 23 |
creator | Fahrin, Fouzia Jones, Daniel C Wu, Yan Keeble, James Archibald, Alexander T |
description | The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis. |
doi_str_mv | 10.5194/acp-23-3609-2023 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f205c3167b5b4e178f67388c55b07dff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742881204</galeid><doaj_id>oai_doaj_org_article_f205c3167b5b4e178f67388c55b07dff</doaj_id><sourcerecordid>A742881204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</originalsourceid><addsrcrecordid>eNptkc1vEzEQxVcIJErbO8eVOHHYMv62uVVVKRFFldrmbHln7eBosw72pgL-ehyCgEjIB1vj3zzNvNc0rwlcCGL4O4fbjrKOSTAdBcqeNSdEaugUo_z5P--XzatS1gBUAOEnzc2jxy9TRDe2U5r9-3Y5ld3W56dY_NDi6EqJoX7PMU1tCm36kSbfbnMKcfSljVO7_HT98JmcNS-CG4s__32fNssP149XH7vbu5vF1eVth1zD3Ak6ACeScU8HRIMBem1ADtpwrZVTHsWAEoEaz50jMhASeuqEUjgYIz07bRYH3SG5td3muHH5u00u2l-FlFfW5Tni6G2gIJARqXrRc0-UDlIxrVGIHtQQQtV6c9Cq63zd-TLbddrlqY5vqdLGCCIU_KVWrorGKaQ5O9zEgvZScao1ocArdfEfqp7BbyJWz_Z-HTe8PWqozOy_zSu3K8UuHu6PWTiwmFMp2Yc_ixOw-_RtTd9SZvfp23367Ccvgp8H</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789951570</pqid></control><display><type>article</type><title>Technical note: Unsupervised classification of ozone profiles in UKESM1</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Fahrin, Fouzia ; Jones, Daniel C ; Wu, Yan ; Keeble, James ; Archibald, Alexander T</creator><creatorcontrib>Fahrin, Fouzia ; Jones, Daniel C ; Wu, Yan ; Keeble, James ; Archibald, Alexander T</creatorcontrib><description>The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-23-3609-2023</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Advection ; Air pollution ; Altitude ; Analysis ; Atmosphere ; Atmospheric ozone ; Chemistry ; Classification ; Climate ; Climate models ; Cluster analysis ; Coherence ; Datasets ; Distribution ; Experiments ; Future climates ; Global ozone ; Greenhouse gases ; High altitude ; Latitude ; Ozone ; Ozone depletion ; Ozone hole ; Ozone layer depletion ; Ozone profiles ; Radiative forcing ; Stratosphere ; Subpopulations ; Temporal variability ; Temporal variations ; Tropopause ; Tropospheric ozone ; Vertical distribution ; VOCs ; Volatile organic compounds</subject><ispartof>Atmospheric chemistry and physics, 2023-03, Vol.23 (6), p.3609-3627</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</citedby><cites>FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</cites><orcidid>0000-0003-2714-1084 ; 0000-0001-9302-4180 ; 0000-0001-5586-8788 ; 0000-0002-8701-4506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2789951570/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2789951570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Fahrin, Fouzia</creatorcontrib><creatorcontrib>Jones, Daniel C</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Keeble, James</creatorcontrib><creatorcontrib>Archibald, Alexander T</creatorcontrib><title>Technical note: Unsupervised classification of ozone profiles in UKESM1</title><title>Atmospheric chemistry and physics</title><description>The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis.</description><subject>Advection</subject><subject>Air pollution</subject><subject>Altitude</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Atmospheric ozone</subject><subject>Chemistry</subject><subject>Classification</subject><subject>Climate</subject><subject>Climate models</subject><subject>Cluster analysis</subject><subject>Coherence</subject><subject>Datasets</subject><subject>Distribution</subject><subject>Experiments</subject><subject>Future climates</subject><subject>Global ozone</subject><subject>Greenhouse gases</subject><subject>High altitude</subject><subject>Latitude</subject><subject>Ozone</subject><subject>Ozone depletion</subject><subject>Ozone hole</subject><subject>Ozone layer depletion</subject><subject>Ozone profiles</subject><subject>Radiative forcing</subject><subject>Stratosphere</subject><subject>Subpopulations</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Tropopause</subject><subject>Tropospheric ozone</subject><subject>Vertical distribution</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc1vEzEQxVcIJErbO8eVOHHYMv62uVVVKRFFldrmbHln7eBosw72pgL-ehyCgEjIB1vj3zzNvNc0rwlcCGL4O4fbjrKOSTAdBcqeNSdEaugUo_z5P--XzatS1gBUAOEnzc2jxy9TRDe2U5r9-3Y5ld3W56dY_NDi6EqJoX7PMU1tCm36kSbfbnMKcfSljVO7_HT98JmcNS-CG4s__32fNssP149XH7vbu5vF1eVth1zD3Ak6ACeScU8HRIMBem1ADtpwrZVTHsWAEoEaz50jMhASeuqEUjgYIz07bRYH3SG5td3muHH5u00u2l-FlFfW5Tni6G2gIJARqXrRc0-UDlIxrVGIHtQQQtV6c9Cq63zd-TLbddrlqY5vqdLGCCIU_KVWrorGKaQ5O9zEgvZScao1ocArdfEfqp7BbyJWz_Z-HTe8PWqozOy_zSu3K8UuHu6PWTiwmFMp2Yc_ixOw-_RtTd9SZvfp23367Ccvgp8H</recordid><startdate>20230324</startdate><enddate>20230324</enddate><creator>Fahrin, Fouzia</creator><creator>Jones, Daniel C</creator><creator>Wu, Yan</creator><creator>Keeble, James</creator><creator>Archibald, Alexander T</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2714-1084</orcidid><orcidid>https://orcid.org/0000-0001-9302-4180</orcidid><orcidid>https://orcid.org/0000-0001-5586-8788</orcidid><orcidid>https://orcid.org/0000-0002-8701-4506</orcidid></search><sort><creationdate>20230324</creationdate><title>Technical note: Unsupervised classification of ozone profiles in UKESM1</title><author>Fahrin, Fouzia ; Jones, Daniel C ; Wu, Yan ; Keeble, James ; Archibald, Alexander T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Air pollution</topic><topic>Altitude</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Atmospheric ozone</topic><topic>Chemistry</topic><topic>Classification</topic><topic>Climate</topic><topic>Climate models</topic><topic>Cluster analysis</topic><topic>Coherence</topic><topic>Datasets</topic><topic>Distribution</topic><topic>Experiments</topic><topic>Future climates</topic><topic>Global ozone</topic><topic>Greenhouse gases</topic><topic>High altitude</topic><topic>Latitude</topic><topic>Ozone</topic><topic>Ozone depletion</topic><topic>Ozone hole</topic><topic>Ozone layer depletion</topic><topic>Ozone profiles</topic><topic>Radiative forcing</topic><topic>Stratosphere</topic><topic>Subpopulations</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Tropopause</topic><topic>Tropospheric ozone</topic><topic>Vertical distribution</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrin, Fouzia</creatorcontrib><creatorcontrib>Jones, Daniel C</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Keeble, James</creatorcontrib><creatorcontrib>Archibald, Alexander T</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrin, Fouzia</au><au>Jones, Daniel C</au><au>Wu, Yan</au><au>Keeble, James</au><au>Archibald, Alexander T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technical note: Unsupervised classification of ozone profiles in UKESM1</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2023-03-24</date><risdate>2023</risdate><volume>23</volume><issue>6</issue><spage>3609</spage><epage>3627</epage><pages>3609-3627</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-23-3609-2023</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2714-1084</orcidid><orcidid>https://orcid.org/0000-0001-9302-4180</orcidid><orcidid>https://orcid.org/0000-0001-5586-8788</orcidid><orcidid>https://orcid.org/0000-0002-8701-4506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2023-03, Vol.23 (6), p.3609-3627 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f205c3167b5b4e178f67388c55b07dff |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Advection Air pollution Altitude Analysis Atmosphere Atmospheric ozone Chemistry Classification Climate Climate models Cluster analysis Coherence Datasets Distribution Experiments Future climates Global ozone Greenhouse gases High altitude Latitude Ozone Ozone depletion Ozone hole Ozone layer depletion Ozone profiles Radiative forcing Stratosphere Subpopulations Temporal variability Temporal variations Tropopause Tropospheric ozone Vertical distribution VOCs Volatile organic compounds |
title | Technical note: Unsupervised classification of ozone profiles in UKESM1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technical%20note:%20Unsupervised%20classification%20of%20ozone%20profiles%20in%20UKESM1&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Fahrin,%20Fouzia&rft.date=2023-03-24&rft.volume=23&rft.issue=6&rft.spage=3609&rft.epage=3627&rft.pages=3609-3627&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-23-3609-2023&rft_dat=%3Cgale_doaj_%3EA742881204%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789951570&rft_id=info:pmid/&rft_galeid=A742881204&rfr_iscdi=true |