Loading…

Technical note: Unsupervised classification of ozone profiles in UKESM1

The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coheren...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2023-03, Vol.23 (6), p.3609-3627
Main Authors: Fahrin, Fouzia, Jones, Daniel C, Wu, Yan, Keeble, James, Archibald, Alexander T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3
cites cdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3
container_end_page 3627
container_issue 6
container_start_page 3609
container_title Atmospheric chemistry and physics
container_volume 23
creator Fahrin, Fouzia
Jones, Daniel C
Wu, Yan
Keeble, James
Archibald, Alexander T
description The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis.
doi_str_mv 10.5194/acp-23-3609-2023
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f205c3167b5b4e178f67388c55b07dff</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742881204</galeid><doaj_id>oai_doaj_org_article_f205c3167b5b4e178f67388c55b07dff</doaj_id><sourcerecordid>A742881204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</originalsourceid><addsrcrecordid>eNptkc1vEzEQxVcIJErbO8eVOHHYMv62uVVVKRFFldrmbHln7eBosw72pgL-ehyCgEjIB1vj3zzNvNc0rwlcCGL4O4fbjrKOSTAdBcqeNSdEaugUo_z5P--XzatS1gBUAOEnzc2jxy9TRDe2U5r9-3Y5ld3W56dY_NDi6EqJoX7PMU1tCm36kSbfbnMKcfSljVO7_HT98JmcNS-CG4s__32fNssP149XH7vbu5vF1eVth1zD3Ak6ACeScU8HRIMBem1ADtpwrZVTHsWAEoEaz50jMhASeuqEUjgYIz07bRYH3SG5td3muHH5u00u2l-FlFfW5Tni6G2gIJARqXrRc0-UDlIxrVGIHtQQQtV6c9Cq63zd-TLbddrlqY5vqdLGCCIU_KVWrorGKaQ5O9zEgvZScao1ocArdfEfqp7BbyJWz_Z-HTe8PWqozOy_zSu3K8UuHu6PWTiwmFMp2Yc_ixOw-_RtTd9SZvfp23367Ccvgp8H</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789951570</pqid></control><display><type>article</type><title>Technical note: Unsupervised classification of ozone profiles in UKESM1</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Fahrin, Fouzia ; Jones, Daniel C ; Wu, Yan ; Keeble, James ; Archibald, Alexander T</creator><creatorcontrib>Fahrin, Fouzia ; Jones, Daniel C ; Wu, Yan ; Keeble, James ; Archibald, Alexander T</creatorcontrib><description>The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-23-3609-2023</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Advection ; Air pollution ; Altitude ; Analysis ; Atmosphere ; Atmospheric ozone ; Chemistry ; Classification ; Climate ; Climate models ; Cluster analysis ; Coherence ; Datasets ; Distribution ; Experiments ; Future climates ; Global ozone ; Greenhouse gases ; High altitude ; Latitude ; Ozone ; Ozone depletion ; Ozone hole ; Ozone layer depletion ; Ozone profiles ; Radiative forcing ; Stratosphere ; Subpopulations ; Temporal variability ; Temporal variations ; Tropopause ; Tropospheric ozone ; Vertical distribution ; VOCs ; Volatile organic compounds</subject><ispartof>Atmospheric chemistry and physics, 2023-03, Vol.23 (6), p.3609-3627</ispartof><rights>COPYRIGHT 2023 Copernicus GmbH</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</citedby><cites>FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</cites><orcidid>0000-0003-2714-1084 ; 0000-0001-9302-4180 ; 0000-0001-5586-8788 ; 0000-0002-8701-4506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2789951570/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2789951570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Fahrin, Fouzia</creatorcontrib><creatorcontrib>Jones, Daniel C</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Keeble, James</creatorcontrib><creatorcontrib>Archibald, Alexander T</creatorcontrib><title>Technical note: Unsupervised classification of ozone profiles in UKESM1</title><title>Atmospheric chemistry and physics</title><description>The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis.</description><subject>Advection</subject><subject>Air pollution</subject><subject>Altitude</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Atmospheric ozone</subject><subject>Chemistry</subject><subject>Classification</subject><subject>Climate</subject><subject>Climate models</subject><subject>Cluster analysis</subject><subject>Coherence</subject><subject>Datasets</subject><subject>Distribution</subject><subject>Experiments</subject><subject>Future climates</subject><subject>Global ozone</subject><subject>Greenhouse gases</subject><subject>High altitude</subject><subject>Latitude</subject><subject>Ozone</subject><subject>Ozone depletion</subject><subject>Ozone hole</subject><subject>Ozone layer depletion</subject><subject>Ozone profiles</subject><subject>Radiative forcing</subject><subject>Stratosphere</subject><subject>Subpopulations</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Tropopause</subject><subject>Tropospheric ozone</subject><subject>Vertical distribution</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkc1vEzEQxVcIJErbO8eVOHHYMv62uVVVKRFFldrmbHln7eBosw72pgL-ehyCgEjIB1vj3zzNvNc0rwlcCGL4O4fbjrKOSTAdBcqeNSdEaugUo_z5P--XzatS1gBUAOEnzc2jxy9TRDe2U5r9-3Y5ld3W56dY_NDi6EqJoX7PMU1tCm36kSbfbnMKcfSljVO7_HT98JmcNS-CG4s__32fNssP149XH7vbu5vF1eVth1zD3Ak6ACeScU8HRIMBem1ADtpwrZVTHsWAEoEaz50jMhASeuqEUjgYIz07bRYH3SG5td3muHH5u00u2l-FlFfW5Tni6G2gIJARqXrRc0-UDlIxrVGIHtQQQtV6c9Cq63zd-TLbddrlqY5vqdLGCCIU_KVWrorGKaQ5O9zEgvZScao1ocArdfEfqp7BbyJWz_Z-HTe8PWqozOy_zSu3K8UuHu6PWTiwmFMp2Yc_ixOw-_RtTd9SZvfp23367Ccvgp8H</recordid><startdate>20230324</startdate><enddate>20230324</enddate><creator>Fahrin, Fouzia</creator><creator>Jones, Daniel C</creator><creator>Wu, Yan</creator><creator>Keeble, James</creator><creator>Archibald, Alexander T</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2714-1084</orcidid><orcidid>https://orcid.org/0000-0001-9302-4180</orcidid><orcidid>https://orcid.org/0000-0001-5586-8788</orcidid><orcidid>https://orcid.org/0000-0002-8701-4506</orcidid></search><sort><creationdate>20230324</creationdate><title>Technical note: Unsupervised classification of ozone profiles in UKESM1</title><author>Fahrin, Fouzia ; Jones, Daniel C ; Wu, Yan ; Keeble, James ; Archibald, Alexander T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Air pollution</topic><topic>Altitude</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Atmospheric ozone</topic><topic>Chemistry</topic><topic>Classification</topic><topic>Climate</topic><topic>Climate models</topic><topic>Cluster analysis</topic><topic>Coherence</topic><topic>Datasets</topic><topic>Distribution</topic><topic>Experiments</topic><topic>Future climates</topic><topic>Global ozone</topic><topic>Greenhouse gases</topic><topic>High altitude</topic><topic>Latitude</topic><topic>Ozone</topic><topic>Ozone depletion</topic><topic>Ozone hole</topic><topic>Ozone layer depletion</topic><topic>Ozone profiles</topic><topic>Radiative forcing</topic><topic>Stratosphere</topic><topic>Subpopulations</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Tropopause</topic><topic>Tropospheric ozone</topic><topic>Vertical distribution</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrin, Fouzia</creatorcontrib><creatorcontrib>Jones, Daniel C</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Keeble, James</creatorcontrib><creatorcontrib>Archibald, Alexander T</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrin, Fouzia</au><au>Jones, Daniel C</au><au>Wu, Yan</au><au>Keeble, James</au><au>Archibald, Alexander T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technical note: Unsupervised classification of ozone profiles in UKESM1</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2023-03-24</date><risdate>2023</risdate><volume>23</volume><issue>6</issue><spage>3609</spage><epage>3627</epage><pages>3609-3627</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is expanded in both future projections, which are most prominent during austral summer. Our results suggest that GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model analysis.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-23-3609-2023</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2714-1084</orcidid><orcidid>https://orcid.org/0000-0001-9302-4180</orcidid><orcidid>https://orcid.org/0000-0001-5586-8788</orcidid><orcidid>https://orcid.org/0000-0002-8701-4506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2023-03, Vol.23 (6), p.3609-3627
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f205c3167b5b4e178f67388c55b07dff
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Advection
Air pollution
Altitude
Analysis
Atmosphere
Atmospheric ozone
Chemistry
Classification
Climate
Climate models
Cluster analysis
Coherence
Datasets
Distribution
Experiments
Future climates
Global ozone
Greenhouse gases
High altitude
Latitude
Ozone
Ozone depletion
Ozone hole
Ozone layer depletion
Ozone profiles
Radiative forcing
Stratosphere
Subpopulations
Temporal variability
Temporal variations
Tropopause
Tropospheric ozone
Vertical distribution
VOCs
Volatile organic compounds
title Technical note: Unsupervised classification of ozone profiles in UKESM1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technical%20note:%20Unsupervised%20classification%20of%20ozone%20profiles%20in%20UKESM1&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Fahrin,%20Fouzia&rft.date=2023-03-24&rft.volume=23&rft.issue=6&rft.spage=3609&rft.epage=3627&rft.pages=3609-3627&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-23-3609-2023&rft_dat=%3Cgale_doaj_%3EA742881204%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-52d041634e2dcc9cf0b8906d894887a7ec5dc6c029e4aa16f11fb2a577cd996e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789951570&rft_id=info:pmid/&rft_galeid=A742881204&rfr_iscdi=true