Loading…

Energy Transition Pathways for Deep Decarbonization of the Greater Montreal Region: An Energy Optimization Framework

More than half of the world’s population live in cities, and by 2050, it is expected that this proportion will reach almost 68%. These densely populated cities consume more than 75% of the world’s primary energy and are responsible for the emission of around 70% of anthropogenic carbon. Providing su...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-05, Vol.15 (10), p.3760-3760
Main Authors: Aliakbari Sani, Sajad, Maroufmashat, Azadeh, Babonneau, Frédéric, Bahn, Olivier, Delage, Erick, Haurie, Alain, Mousseau, Normand, Vaillancourt, Kathleen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:More than half of the world’s population live in cities, and by 2050, it is expected that this proportion will reach almost 68%. These densely populated cities consume more than 75% of the world’s primary energy and are responsible for the emission of around 70% of anthropogenic carbon. Providing sustainable energy for the growing demand in cities requires multifaceted planning approach. In this study, we modeled the energy system of the Greater Montreal region to evaluate the impact of different environmental mitigation policies on the energy system of this region over a long-term period (2020–2050). In doing so, we have used the open-source optimization-based model called the Energy–Technology–Environment Model (ETEM). The ETEM is a long-term bottom–up energy model that provides insight into the best options for cities to procure energy, and satisfies useful demands while reducing carbon dioxide (CO2) emissions. Results show that, under a deep decarbonization scenario, the transportation, commercial, and residential sectors will contribute to emission reduction by 6.9, 1.6, and 1 million ton CO2-eq in 2050, respectively, compared with their 2020 levels. This is mainly achieved by (i) replacing fossil fuel cars with electric-based vehicles in private and public transportation sectors; (ii) replacing fossil fuel furnaces with electric heat pumps to satisfy heating demand in buildings; and (iii) improving the efficiency of buildings by isolating walls and roofs.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15103760