Loading…

The Role of Aerosol Concentration on Precipitation in a Winter Extreme Mixed-Phase System: The Case of Storm Filomena

Aerosol concentration, size and composition are fundamental in hydrometeor formation processes. Meteorological models often use prescribed aerosol concentrations and a single substance. In this study, we analyze the role of aerosol concentration, acting both as CCN and IN, in the development of prec...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-03, Vol.15 (5), p.1398
Main Authors: Pravia-Sarabia, Enrique, Montávez, Juan Pedro, Halifa-Marin, Amar, Jiménez-Guerrero, Pedro, Gomez-Navarro, Juan José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aerosol concentration, size and composition are fundamental in hydrometeor formation processes. Meteorological models often use prescribed aerosol concentrations and a single substance. In this study, we analyze the role of aerosol concentration, acting both as CCN and IN, in the development of precipitation in a mixed phase system in numerical weather simulations. To this end, Storm Filomena was selected as the case study. In such a mixed-phase system, the coexistence of supercooled water with ice crystals, as well as the particular existence of a thermal inversion, led to the formation of precipitation in the form of rain, snow and graupel. Several high resolution experiments varying the fixed background aerosol concentration as well as a simulation with an interactive aerosol calculation were performed by means of the WRF-Chem model, using the same physics suite, domain and driving conditions. Results show that the total precipitation remains basically unaltered, with maximum changes of 5%; however, the production of snow is heavily modified. The simulation with maximum prescribed aerosol concentration produced 27% more snow than the interactive aerosol simulation, and diminished the graupel (74%) and rain production (28%). This redistribution of precipitation is mainly linked to the fact that under fixed ice crystal population the variation of aerosol concentration translates into changes in the liquid water content and droplet size and number concentration, thus altering the efficiency of precipitation production. In addition, while modifying the prescribed aerosol concentration produces the same precipitation pattern with the concentration modulating the precipitation amount, interactive aerosol calculation leads to a different precipitation pattern due to the spatial and temporal variability induced in the dynamical aerosol distribution.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15051398