Loading…

DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase

Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD'2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2014-04, Vol.3, p.e02384-e02384
Main Authors: Erdem, Aysen L, Jaszczur, Malgorzata, Bertram, Jeffrey G, Woodgate, Roger, Cox, Michael M, Goodman, Myron F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD'2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required for DNA synthesis; (3) pol V Mut function is regulated by ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or autoregulatory mechanism has previously been found for a DNA polymerase.DOI: http://dx.doi.org/10.7554/eLife.02384.001.
ISSN:2050-084X
2050-084X
DOI:10.7554/elife.02384