Loading…

Fabricating model heterostructures of large-area monolayer or bilayer MoS2 on an Au(111) surface under ultra-high vacuum

•Ultra-high vacuum environment enables ultra-clean MoS2/Au(111) interfaces.•Millimeter-sized monolayer and sub-millimeter-sized bilayer MoS2 form on Au(111).•The bilayer MoS2 on Au(111) exhibits a tunable semiconducting band gap.•A 0.54 eV Schottky barrier forms at the MoS2/Au(111) contact. Fabricat...

Full description

Saved in:
Bibliographic Details
Published in:Results in physics 2024-12, Vol.67, p.108042, Article 108042
Main Authors: Li, Bingrui, Huang, Weiwei, Dai, Chaoqi, Wen, Boyuan, Shen, Yan, Liu, Fei, Xu, Ningsheng, Ming, Fangfei, Deng, Shaozhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1622-d383dbd5bb09408201d7e3bb0727568cdd8480b679cee56a5340f7ef5a601b373
container_end_page
container_issue
container_start_page 108042
container_title Results in physics
container_volume 67
creator Li, Bingrui
Huang, Weiwei
Dai, Chaoqi
Wen, Boyuan
Shen, Yan
Liu, Fei
Xu, Ningsheng
Ming, Fangfei
Deng, Shaozhi
description •Ultra-high vacuum environment enables ultra-clean MoS2/Au(111) interfaces.•Millimeter-sized monolayer and sub-millimeter-sized bilayer MoS2 form on Au(111).•The bilayer MoS2 on Au(111) exhibits a tunable semiconducting band gap.•A 0.54 eV Schottky barrier forms at the MoS2/Au(111) contact. Fabricating heterojunctions with precisely controlled interfacial structures is crucial for exploring novel low-dimensional physics and for realizing high-performance devices. However, such capabilities are often constrained by contamination from the ambient environment or by the limitations of applicable methods and materials under vacuum conditions. In this study, MoS2/Au(111) heterostructures were fabricated by exfoliating MoS2 thin layers onto a crystallized Au(111) surface using a gold-assisted exfoliation method in an ultra-high vacuum environment. This method yields millimeter-sized monolayer or sub-millimeter-sized bilayers with contamination-free interfaces, which are unattainable for samples made in air. Scanning tunneling microscopy revealed that both the monolayer and the bilayer exhibit uniform and well-ordered moiré superlattices controlled by the twisting angle between the Au(111) surface and the MoS2 overlayer. The direct contact with the Au surface renders the monolayer MoS2 weakly metallic, while a less coupled bilayer is semiconducting, indicating a 0.54 eV Schottky barrier for the MoS2/Au(111) contact. This method is applicable to various combinations of van der Waals materials and metal surfaces. The uniform and controllable heterojunctions can serve as ideal model systems for exploring semiconductor–metal interfaces and atomic structures formed within.
doi_str_mv 10.1016/j.rinp.2024.108042
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f22a01d0da9f4dc792345f9918ddc5c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211379724007277</els_id><doaj_id>oai_doaj_org_article_f22a01d0da9f4dc792345f9918ddc5c7</doaj_id><sourcerecordid>S2211379724007277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1622-d383dbd5bb09408201d7e3bb0727568cdd8480b679cee56a5340f7ef5a601b373</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosoKOof8JSjHromadO04EXEL1A8qOcwTSa7WbqNTFvRf2_WinjyNB_M-zAzb5adCL4QXFTn6wWF_m0huSxTo-al3MkOpBQiL3Sjd__k-9nxMKw5T6pSKSEOso8baClYGEO_ZJvosGMrHJHiMNJkx4lwYNGzDmiJORBCGupjB59ILBJrw5w-xmfJYs-gZ5fTqRDijA0TebDIpt6lgakbCfJVWK7YO9hp2hxlex66AY9_4mH2enP9cnWXPzzd3l9dPuRWVFLmrqgL1zrVtrwpeS25cBqLVGmpVVVb5-qy5m2lG4uoKlBFyb1Gr6Dioi10cZjdz1wXYW3eKGyAPk2EYL4bkZYGaAy2Q-OlhMTnDhpfOqsbWZTKN42onbPKbllyZtn0n4HQ__IEN1srzNpsrTBbK8xsRRJdzCJMV74HJDPYgL1FFwjtmNYI_8m_ANsckhw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fabricating model heterostructures of large-area monolayer or bilayer MoS2 on an Au(111) surface under ultra-high vacuum</title><source>ScienceDirect Journals</source><creator>Li, Bingrui ; Huang, Weiwei ; Dai, Chaoqi ; Wen, Boyuan ; Shen, Yan ; Liu, Fei ; Xu, Ningsheng ; Ming, Fangfei ; Deng, Shaozhi</creator><creatorcontrib>Li, Bingrui ; Huang, Weiwei ; Dai, Chaoqi ; Wen, Boyuan ; Shen, Yan ; Liu, Fei ; Xu, Ningsheng ; Ming, Fangfei ; Deng, Shaozhi</creatorcontrib><description>•Ultra-high vacuum environment enables ultra-clean MoS2/Au(111) interfaces.•Millimeter-sized monolayer and sub-millimeter-sized bilayer MoS2 form on Au(111).•The bilayer MoS2 on Au(111) exhibits a tunable semiconducting band gap.•A 0.54 eV Schottky barrier forms at the MoS2/Au(111) contact. Fabricating heterojunctions with precisely controlled interfacial structures is crucial for exploring novel low-dimensional physics and for realizing high-performance devices. However, such capabilities are often constrained by contamination from the ambient environment or by the limitations of applicable methods and materials under vacuum conditions. In this study, MoS2/Au(111) heterostructures were fabricated by exfoliating MoS2 thin layers onto a crystallized Au(111) surface using a gold-assisted exfoliation method in an ultra-high vacuum environment. This method yields millimeter-sized monolayer or sub-millimeter-sized bilayers with contamination-free interfaces, which are unattainable for samples made in air. Scanning tunneling microscopy revealed that both the monolayer and the bilayer exhibit uniform and well-ordered moiré superlattices controlled by the twisting angle between the Au(111) surface and the MoS2 overlayer. The direct contact with the Au surface renders the monolayer MoS2 weakly metallic, while a less coupled bilayer is semiconducting, indicating a 0.54 eV Schottky barrier for the MoS2/Au(111) contact. This method is applicable to various combinations of van der Waals materials and metal surfaces. The uniform and controllable heterojunctions can serve as ideal model systems for exploring semiconductor–metal interfaces and atomic structures formed within.</description><identifier>ISSN: 2211-3797</identifier><identifier>EISSN: 2211-3797</identifier><identifier>DOI: 10.1016/j.rinp.2024.108042</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bilayer ; Moiré superlattices ; Monolayer ; MoS2 on gold ; Scanning tunneling microscopy ; van der Waals heterojunction</subject><ispartof>Results in physics, 2024-12, Vol.67, p.108042, Article 108042</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1622-d383dbd5bb09408201d7e3bb0727568cdd8480b679cee56a5340f7ef5a601b373</cites><orcidid>0000-0003-4630-1653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2211379724007277$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Huang, Weiwei</creatorcontrib><creatorcontrib>Dai, Chaoqi</creatorcontrib><creatorcontrib>Wen, Boyuan</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Xu, Ningsheng</creatorcontrib><creatorcontrib>Ming, Fangfei</creatorcontrib><creatorcontrib>Deng, Shaozhi</creatorcontrib><title>Fabricating model heterostructures of large-area monolayer or bilayer MoS2 on an Au(111) surface under ultra-high vacuum</title><title>Results in physics</title><description>•Ultra-high vacuum environment enables ultra-clean MoS2/Au(111) interfaces.•Millimeter-sized monolayer and sub-millimeter-sized bilayer MoS2 form on Au(111).•The bilayer MoS2 on Au(111) exhibits a tunable semiconducting band gap.•A 0.54 eV Schottky barrier forms at the MoS2/Au(111) contact. Fabricating heterojunctions with precisely controlled interfacial structures is crucial for exploring novel low-dimensional physics and for realizing high-performance devices. However, such capabilities are often constrained by contamination from the ambient environment or by the limitations of applicable methods and materials under vacuum conditions. In this study, MoS2/Au(111) heterostructures were fabricated by exfoliating MoS2 thin layers onto a crystallized Au(111) surface using a gold-assisted exfoliation method in an ultra-high vacuum environment. This method yields millimeter-sized monolayer or sub-millimeter-sized bilayers with contamination-free interfaces, which are unattainable for samples made in air. Scanning tunneling microscopy revealed that both the monolayer and the bilayer exhibit uniform and well-ordered moiré superlattices controlled by the twisting angle between the Au(111) surface and the MoS2 overlayer. The direct contact with the Au surface renders the monolayer MoS2 weakly metallic, while a less coupled bilayer is semiconducting, indicating a 0.54 eV Schottky barrier for the MoS2/Au(111) contact. This method is applicable to various combinations of van der Waals materials and metal surfaces. The uniform and controllable heterojunctions can serve as ideal model systems for exploring semiconductor–metal interfaces and atomic structures formed within.</description><subject>Bilayer</subject><subject>Moiré superlattices</subject><subject>Monolayer</subject><subject>MoS2 on gold</subject><subject>Scanning tunneling microscopy</subject><subject>van der Waals heterojunction</subject><issn>2211-3797</issn><issn>2211-3797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LxDAQhosoKOof8JSjHromadO04EXEL1A8qOcwTSa7WbqNTFvRf2_WinjyNB_M-zAzb5adCL4QXFTn6wWF_m0huSxTo-al3MkOpBQiL3Sjd__k-9nxMKw5T6pSKSEOso8baClYGEO_ZJvosGMrHJHiMNJkx4lwYNGzDmiJORBCGupjB59ILBJrw5w-xmfJYs-gZ5fTqRDijA0TebDIpt6lgakbCfJVWK7YO9hp2hxlex66AY9_4mH2enP9cnWXPzzd3l9dPuRWVFLmrqgL1zrVtrwpeS25cBqLVGmpVVVb5-qy5m2lG4uoKlBFyb1Gr6Dioi10cZjdz1wXYW3eKGyAPk2EYL4bkZYGaAy2Q-OlhMTnDhpfOqsbWZTKN42onbPKbllyZtn0n4HQ__IEN1srzNpsrTBbK8xsRRJdzCJMV74HJDPYgL1FFwjtmNYI_8m_ANsckhw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Li, Bingrui</creator><creator>Huang, Weiwei</creator><creator>Dai, Chaoqi</creator><creator>Wen, Boyuan</creator><creator>Shen, Yan</creator><creator>Liu, Fei</creator><creator>Xu, Ningsheng</creator><creator>Ming, Fangfei</creator><creator>Deng, Shaozhi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4630-1653</orcidid></search><sort><creationdate>202412</creationdate><title>Fabricating model heterostructures of large-area monolayer or bilayer MoS2 on an Au(111) surface under ultra-high vacuum</title><author>Li, Bingrui ; Huang, Weiwei ; Dai, Chaoqi ; Wen, Boyuan ; Shen, Yan ; Liu, Fei ; Xu, Ningsheng ; Ming, Fangfei ; Deng, Shaozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1622-d383dbd5bb09408201d7e3bb0727568cdd8480b679cee56a5340f7ef5a601b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bilayer</topic><topic>Moiré superlattices</topic><topic>Monolayer</topic><topic>MoS2 on gold</topic><topic>Scanning tunneling microscopy</topic><topic>van der Waals heterojunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bingrui</creatorcontrib><creatorcontrib>Huang, Weiwei</creatorcontrib><creatorcontrib>Dai, Chaoqi</creatorcontrib><creatorcontrib>Wen, Boyuan</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Liu, Fei</creatorcontrib><creatorcontrib>Xu, Ningsheng</creatorcontrib><creatorcontrib>Ming, Fangfei</creatorcontrib><creatorcontrib>Deng, Shaozhi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Results in physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bingrui</au><au>Huang, Weiwei</au><au>Dai, Chaoqi</au><au>Wen, Boyuan</au><au>Shen, Yan</au><au>Liu, Fei</au><au>Xu, Ningsheng</au><au>Ming, Fangfei</au><au>Deng, Shaozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabricating model heterostructures of large-area monolayer or bilayer MoS2 on an Au(111) surface under ultra-high vacuum</atitle><jtitle>Results in physics</jtitle><date>2024-12</date><risdate>2024</risdate><volume>67</volume><spage>108042</spage><pages>108042-</pages><artnum>108042</artnum><issn>2211-3797</issn><eissn>2211-3797</eissn><abstract>•Ultra-high vacuum environment enables ultra-clean MoS2/Au(111) interfaces.•Millimeter-sized monolayer and sub-millimeter-sized bilayer MoS2 form on Au(111).•The bilayer MoS2 on Au(111) exhibits a tunable semiconducting band gap.•A 0.54 eV Schottky barrier forms at the MoS2/Au(111) contact. Fabricating heterojunctions with precisely controlled interfacial structures is crucial for exploring novel low-dimensional physics and for realizing high-performance devices. However, such capabilities are often constrained by contamination from the ambient environment or by the limitations of applicable methods and materials under vacuum conditions. In this study, MoS2/Au(111) heterostructures were fabricated by exfoliating MoS2 thin layers onto a crystallized Au(111) surface using a gold-assisted exfoliation method in an ultra-high vacuum environment. This method yields millimeter-sized monolayer or sub-millimeter-sized bilayers with contamination-free interfaces, which are unattainable for samples made in air. Scanning tunneling microscopy revealed that both the monolayer and the bilayer exhibit uniform and well-ordered moiré superlattices controlled by the twisting angle between the Au(111) surface and the MoS2 overlayer. The direct contact with the Au surface renders the monolayer MoS2 weakly metallic, while a less coupled bilayer is semiconducting, indicating a 0.54 eV Schottky barrier for the MoS2/Au(111) contact. This method is applicable to various combinations of van der Waals materials and metal surfaces. The uniform and controllable heterojunctions can serve as ideal model systems for exploring semiconductor–metal interfaces and atomic structures formed within.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.rinp.2024.108042</doi><orcidid>https://orcid.org/0000-0003-4630-1653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-3797
ispartof Results in physics, 2024-12, Vol.67, p.108042, Article 108042
issn 2211-3797
2211-3797
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f22a01d0da9f4dc792345f9918ddc5c7
source ScienceDirect Journals
subjects Bilayer
Moiré superlattices
Monolayer
MoS2 on gold
Scanning tunneling microscopy
van der Waals heterojunction
title Fabricating model heterostructures of large-area monolayer or bilayer MoS2 on an Au(111) surface under ultra-high vacuum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabricating%20model%20heterostructures%20of%20large-area%20monolayer%20or%20bilayer%20MoS2%20on%20an%20Au(111)%20surface%20under%20ultra-high%20vacuum&rft.jtitle=Results%20in%20physics&rft.au=Li,%20Bingrui&rft.date=2024-12&rft.volume=67&rft.spage=108042&rft.pages=108042-&rft.artnum=108042&rft.issn=2211-3797&rft.eissn=2211-3797&rft_id=info:doi/10.1016/j.rinp.2024.108042&rft_dat=%3Celsevier_doaj_%3ES2211379724007277%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1622-d383dbd5bb09408201d7e3bb0727568cdd8480b679cee56a5340f7ef5a601b373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true