Loading…
Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis
Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly express...
Saved in:
Published in: | Nature communications 2024-02, Vol.15 (1), p.1382-1382, Article 1382 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c629t-39f950f18de72f64ae6dbfff99976fe70fd10344915f7757cad8e74e11d9fa53 |
---|---|
cites | cdi_FETCH-LOGICAL-c629t-39f950f18de72f64ae6dbfff99976fe70fd10344915f7757cad8e74e11d9fa53 |
container_end_page | 1382 |
container_issue | 1 |
container_start_page | 1382 |
container_title | Nature communications |
container_volume | 15 |
creator | Minoia, Melania Quintana-Cordero, Jany Jetzinger, Katharina Kotan, Ilgin Eser Turnbull, Kathryn Jane Ciccarelli, Michela Masser, Anna E. Liebers, Dorina Gouarin, Eloïse Czech, Marius Hauryliuk, Vasili Bukau, Bernd Kramer, Günter Andréasson, Claes |
description | Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.
Here the authors discover a dedicated ribosome-associated chaperone, Chp1, that assists in the challenging biogenesis of eukaryotic translation elongation factor 1A (eEF1A) by cotranslationally stabilizing the growing GTPase domain of eEF1A. |
doi_str_mv | 10.1038/s41467-024-45645-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f23814c7fcb4463299135165d37e841c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f23814c7fcb4463299135165d37e841c</doaj_id><sourcerecordid>2928241817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629t-39f950f18de72f64ae6dbfff99976fe70fd10344915f7757cad8e74e11d9fa53</originalsourceid><addsrcrecordid>eNqFkk2LEzEchwdR3KXuF_AgA148OJr3l2Opu-5C0cviNWSSf9opbTMmM5T99qaduq6CGgh5e_IkIb-qeo3RB4yo-pgZZkI2iLCGccF4c3hWXRLEcIMloc-f9C-qq5w3qBSqsWLsZXVBFRVIKX5ZfVmse1x3uba1B985O4Cv3dr2kOIeajvUwxrq1LUxxx2UQZnJNsBqtMnnGq5v8Lxuu7iCPeQuv6peBLvNcHVuZ9X9zfX94rZZfv18t5gvGyeIHhqqg-YoYOVBkiCYBeHbEILWWooAEgVfHsmYxjxIyaWzXoFkgLHXwXI6q-4mrY92Y_rU7Wx6MNF25jQR08rYNHRuCyYQqjBzMriWMUGJ1phyLLinEhTDrriWkysfoB_b32zbsS-1LdXkogLiVCuZCQqEYb7lpnVeGx-ccpgKqYQuuuavuk_dt_npcuNuNIRgTmXh3_-fzwWnhHNS8HcT3qf4fYQ8mF2XHWy3dg9xzIZoogjDCh_Nb_9AN3FM-_ItR0oigmTJwawiE-VSzDlBeLwBRuaYNDMlzZSkmVPSzKFsenNWj-0O_OOWn7kqAD2_qiztV5B-nf0P7Q9w2tyc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927020738</pqid></control><display><type>article</type><title>Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis</title><source>PubMed (Medline)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Minoia, Melania ; Quintana-Cordero, Jany ; Jetzinger, Katharina ; Kotan, Ilgin Eser ; Turnbull, Kathryn Jane ; Ciccarelli, Michela ; Masser, Anna E. ; Liebers, Dorina ; Gouarin, Eloïse ; Czech, Marius ; Hauryliuk, Vasili ; Bukau, Bernd ; Kramer, Günter ; Andréasson, Claes</creator><creatorcontrib>Minoia, Melania ; Quintana-Cordero, Jany ; Jetzinger, Katharina ; Kotan, Ilgin Eser ; Turnbull, Kathryn Jane ; Ciccarelli, Michela ; Masser, Anna E. ; Liebers, Dorina ; Gouarin, Eloïse ; Czech, Marius ; Hauryliuk, Vasili ; Bukau, Bernd ; Kramer, Günter ; Andréasson, Claes</creatorcontrib><description>Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.
Here the authors discover a dedicated ribosome-associated chaperone, Chp1, that assists in the challenging biogenesis of eukaryotic translation elongation factor 1A (eEF1A) by cotranslationally stabilizing the growing GTPase domain of eEF1A.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-45645-w</identifier><identifier>PMID: 38360885</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/44 ; 14/19 ; 38 ; 38/1 ; 38/39 ; 38/70 ; 38/77 ; 42 ; 42/70 ; 45/23 ; 45/29 ; 631/337/470/1981 ; 631/45/470/1981 ; 631/80/304 ; 631/80/470/1981 ; 631/80/470/2284 ; 82/16 ; 82/29 ; 82/58 ; 82/80 ; 82/83 ; Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Biologi ; Biological Sciences ; Biosynthesis ; Chaperones ; Elongation ; Encephalopathy ; Epilepsy ; Folding ; Folding machines ; HSF1 protein ; Humanities and Social Sciences ; Mechanisms of disease ; multidisciplinary ; Natural Sciences ; Naturvetenskap ; Polypeptides ; Protein aggregation ; Protein folding ; Protein interaction ; Proteins ; Proteolysis ; Ribonucleic acid ; Ribosomes ; RNA ; Science ; Science (multidisciplinary) ; Transcription activation ; Translation elongation</subject><ispartof>Nature communications, 2024-02, Vol.15 (1), p.1382-1382, Article 1382</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c629t-39f950f18de72f64ae6dbfff99976fe70fd10344915f7757cad8e74e11d9fa53</citedby><cites>FETCH-LOGICAL-c629t-39f950f18de72f64ae6dbfff99976fe70fd10344915f7757cad8e74e11d9fa53</cites><orcidid>0000-0003-2389-5057 ; 0000-0001-8948-0685 ; 0000-0002-8234-2922 ; 0000-0001-7552-8393 ; 0000-0002-0899-974X ; 0000-0001-9028-979X ; 0000-0003-0521-7199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2927020738/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2927020738?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25751,27922,27923,37010,37011,44588,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38360885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-232552$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-221537$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/fe2c8b74-f8e6-4db5-bcd9-dfc8c1367869$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Minoia, Melania</creatorcontrib><creatorcontrib>Quintana-Cordero, Jany</creatorcontrib><creatorcontrib>Jetzinger, Katharina</creatorcontrib><creatorcontrib>Kotan, Ilgin Eser</creatorcontrib><creatorcontrib>Turnbull, Kathryn Jane</creatorcontrib><creatorcontrib>Ciccarelli, Michela</creatorcontrib><creatorcontrib>Masser, Anna E.</creatorcontrib><creatorcontrib>Liebers, Dorina</creatorcontrib><creatorcontrib>Gouarin, Eloïse</creatorcontrib><creatorcontrib>Czech, Marius</creatorcontrib><creatorcontrib>Hauryliuk, Vasili</creatorcontrib><creatorcontrib>Bukau, Bernd</creatorcontrib><creatorcontrib>Kramer, Günter</creatorcontrib><creatorcontrib>Andréasson, Claes</creatorcontrib><title>Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.
Here the authors discover a dedicated ribosome-associated chaperone, Chp1, that assists in the challenging biogenesis of eukaryotic translation elongation factor 1A (eEF1A) by cotranslationally stabilizing the growing GTPase domain of eEF1A.</description><subject>13/1</subject><subject>13/44</subject><subject>14/19</subject><subject>38</subject><subject>38/1</subject><subject>38/39</subject><subject>38/70</subject><subject>38/77</subject><subject>42</subject><subject>42/70</subject><subject>45/23</subject><subject>45/29</subject><subject>631/337/470/1981</subject><subject>631/45/470/1981</subject><subject>631/80/304</subject><subject>631/80/470/1981</subject><subject>631/80/470/2284</subject><subject>82/16</subject><subject>82/29</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Chaperones</subject><subject>Elongation</subject><subject>Encephalopathy</subject><subject>Epilepsy</subject><subject>Folding</subject><subject>Folding machines</subject><subject>HSF1 protein</subject><subject>Humanities and Social Sciences</subject><subject>Mechanisms of disease</subject><subject>multidisciplinary</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Polypeptides</subject><subject>Protein aggregation</subject><subject>Protein folding</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription activation</subject><subject>Translation elongation</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk2LEzEchwdR3KXuF_AgA148OJr3l2Opu-5C0cviNWSSf9opbTMmM5T99qaduq6CGgh5e_IkIb-qeo3RB4yo-pgZZkI2iLCGccF4c3hWXRLEcIMloc-f9C-qq5w3qBSqsWLsZXVBFRVIKX5ZfVmse1x3uba1B985O4Cv3dr2kOIeajvUwxrq1LUxxx2UQZnJNsBqtMnnGq5v8Lxuu7iCPeQuv6peBLvNcHVuZ9X9zfX94rZZfv18t5gvGyeIHhqqg-YoYOVBkiCYBeHbEILWWooAEgVfHsmYxjxIyaWzXoFkgLHXwXI6q-4mrY92Y_rU7Wx6MNF25jQR08rYNHRuCyYQqjBzMriWMUGJ1phyLLinEhTDrriWkysfoB_b32zbsS-1LdXkogLiVCuZCQqEYb7lpnVeGx-ccpgKqYQuuuavuk_dt_npcuNuNIRgTmXh3_-fzwWnhHNS8HcT3qf4fYQ8mF2XHWy3dg9xzIZoogjDCh_Nb_9AN3FM-_ItR0oigmTJwawiE-VSzDlBeLwBRuaYNDMlzZSkmVPSzKFsenNWj-0O_OOWn7kqAD2_qiztV5B-nf0P7Q9w2tyc</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Minoia, Melania</creator><creator>Quintana-Cordero, Jany</creator><creator>Jetzinger, Katharina</creator><creator>Kotan, Ilgin Eser</creator><creator>Turnbull, Kathryn Jane</creator><creator>Ciccarelli, Michela</creator><creator>Masser, Anna E.</creator><creator>Liebers, Dorina</creator><creator>Gouarin, Eloïse</creator><creator>Czech, Marius</creator><creator>Hauryliuk, Vasili</creator><creator>Bukau, Bernd</creator><creator>Kramer, Günter</creator><creator>Andréasson, Claes</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>ADHXS</scope><scope>D93</scope><scope>AGCHP</scope><scope>D95</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2389-5057</orcidid><orcidid>https://orcid.org/0000-0001-8948-0685</orcidid><orcidid>https://orcid.org/0000-0002-8234-2922</orcidid><orcidid>https://orcid.org/0000-0001-7552-8393</orcidid><orcidid>https://orcid.org/0000-0002-0899-974X</orcidid><orcidid>https://orcid.org/0000-0001-9028-979X</orcidid><orcidid>https://orcid.org/0000-0003-0521-7199</orcidid></search><sort><creationdate>20240215</creationdate><title>Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis</title><author>Minoia, Melania ; Quintana-Cordero, Jany ; Jetzinger, Katharina ; Kotan, Ilgin Eser ; Turnbull, Kathryn Jane ; Ciccarelli, Michela ; Masser, Anna E. ; Liebers, Dorina ; Gouarin, Eloïse ; Czech, Marius ; Hauryliuk, Vasili ; Bukau, Bernd ; Kramer, Günter ; Andréasson, Claes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629t-39f950f18de72f64ae6dbfff99976fe70fd10344915f7757cad8e74e11d9fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>13/44</topic><topic>14/19</topic><topic>38</topic><topic>38/1</topic><topic>38/39</topic><topic>38/70</topic><topic>38/77</topic><topic>42</topic><topic>42/70</topic><topic>45/23</topic><topic>45/29</topic><topic>631/337/470/1981</topic><topic>631/45/470/1981</topic><topic>631/80/304</topic><topic>631/80/470/1981</topic><topic>631/80/470/2284</topic><topic>82/16</topic><topic>82/29</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Chaperones</topic><topic>Elongation</topic><topic>Encephalopathy</topic><topic>Epilepsy</topic><topic>Folding</topic><topic>Folding machines</topic><topic>HSF1 protein</topic><topic>Humanities and Social Sciences</topic><topic>Mechanisms of disease</topic><topic>multidisciplinary</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Polypeptides</topic><topic>Protein aggregation</topic><topic>Protein folding</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription activation</topic><topic>Translation elongation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minoia, Melania</creatorcontrib><creatorcontrib>Quintana-Cordero, Jany</creatorcontrib><creatorcontrib>Jetzinger, Katharina</creatorcontrib><creatorcontrib>Kotan, Ilgin Eser</creatorcontrib><creatorcontrib>Turnbull, Kathryn Jane</creatorcontrib><creatorcontrib>Ciccarelli, Michela</creatorcontrib><creatorcontrib>Masser, Anna E.</creatorcontrib><creatorcontrib>Liebers, Dorina</creatorcontrib><creatorcontrib>Gouarin, Eloïse</creatorcontrib><creatorcontrib>Czech, Marius</creatorcontrib><creatorcontrib>Hauryliuk, Vasili</creatorcontrib><creatorcontrib>Bukau, Bernd</creatorcontrib><creatorcontrib>Kramer, Günter</creatorcontrib><creatorcontrib>Andréasson, Claes</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SWEPUB Lunds universitet</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minoia, Melania</au><au>Quintana-Cordero, Jany</au><au>Jetzinger, Katharina</au><au>Kotan, Ilgin Eser</au><au>Turnbull, Kathryn Jane</au><au>Ciccarelli, Michela</au><au>Masser, Anna E.</au><au>Liebers, Dorina</au><au>Gouarin, Eloïse</au><au>Czech, Marius</au><au>Hauryliuk, Vasili</au><au>Bukau, Bernd</au><au>Kramer, Günter</au><au>Andréasson, Claes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-02-15</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>1382</spage><epage>1382</epage><pages>1382-1382</pages><artnum>1382</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.
Here the authors discover a dedicated ribosome-associated chaperone, Chp1, that assists in the challenging biogenesis of eukaryotic translation elongation factor 1A (eEF1A) by cotranslationally stabilizing the growing GTPase domain of eEF1A.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38360885</pmid><doi>10.1038/s41467-024-45645-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2389-5057</orcidid><orcidid>https://orcid.org/0000-0001-8948-0685</orcidid><orcidid>https://orcid.org/0000-0002-8234-2922</orcidid><orcidid>https://orcid.org/0000-0001-7552-8393</orcidid><orcidid>https://orcid.org/0000-0002-0899-974X</orcidid><orcidid>https://orcid.org/0000-0001-9028-979X</orcidid><orcidid>https://orcid.org/0000-0003-0521-7199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-02, Vol.15 (1), p.1382-1382, Article 1382 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f23814c7fcb4463299135165d37e841c |
source | PubMed (Medline); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/44 14/19 38 38/1 38/39 38/70 38/77 42 42/70 45/23 45/29 631/337/470/1981 631/45/470/1981 631/80/304 631/80/470/1981 631/80/470/2284 82/16 82/29 82/58 82/80 82/83 Biochemistry and Molecular Biology Biokemi och molekylärbiologi Biologi Biological Sciences Biosynthesis Chaperones Elongation Encephalopathy Epilepsy Folding Folding machines HSF1 protein Humanities and Social Sciences Mechanisms of disease multidisciplinary Natural Sciences Naturvetenskap Polypeptides Protein aggregation Protein folding Protein interaction Proteins Proteolysis Ribonucleic acid Ribosomes RNA Science Science (multidisciplinary) Transcription activation Translation elongation |
title | Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chp1%20is%20a%20dedicated%20chaperone%20at%20the%20ribosome%20that%20safeguards%20eEF1A%20biogenesis&rft.jtitle=Nature%20communications&rft.au=Minoia,%20Melania&rft.date=2024-02-15&rft.volume=15&rft.issue=1&rft.spage=1382&rft.epage=1382&rft.pages=1382-1382&rft.artnum=1382&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-45645-w&rft_dat=%3Cproquest_doaj_%3E2928241817%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c629t-39f950f18de72f64ae6dbfff99976fe70fd10344915f7757cad8e74e11d9fa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2927020738&rft_id=info:pmid/38360885&rfr_iscdi=true |