Loading…
Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells
Wide-bandgap perovskite solar cells (WBG-PSCs) are critical for developing perovskite/silicon tandem solar cells. The defect-rich surface of WBG-PSCs will lead to severe interfacial carrier loss and phase segregation, deteriorating the device’s performance. Herein, we develop a surface reconstructio...
Saved in:
Published in: | Nature communications 2024-12, Vol.15 (1), p.10554-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wide-bandgap perovskite solar cells (WBG-PSCs) are critical for developing perovskite/silicon tandem solar cells. The defect-rich surface of WBG-PSCs will lead to severe interfacial carrier loss and phase segregation, deteriorating the device’s performance. Herein, we develop a surface reconstruction method by removing the defect-rich crystal surface by nano-polishing and then passivating the newly exposed high-crystallinity surface. This method can refresh the perovskite/electron-transporter interface and release the residual lattice strain, improving the charge collection and inhibiting the ion migration of WBG perovskites. As a result, we can achieve certified efficiencies of 23.67% and 21.70% for opaque and semi-transparent PSCs via a 1.67-eV perovskite absorber. Moreover, we achieve four-terminal perovskite/silicon tandem solar cells with a certified efficiency of 33.10% on an aperture area of one square centimeter.
The defect-rich surface of wide-bandgap perovskite solar cells leads to severe interfacial carrier loss and phase segregation. Here, the authors reconstruct the surface through nano-polishing followed by passivation, achieving certified efficiency of 33.1% for perovskite/silicon tandem solar cells. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-54925-4 |