Loading…

Minimum irradiance required to inhibit microbial growth to prevent ventilatorassociated pneumonia by an endotracheal tube equipped with blue LEDs

Artificial respiration is saving lives especially in the COVID-19 pandemic, but it also carries the risk to cause ventilator-associated pneumonia (VAP). VAP is one of the most common and severe nosocomial infections, often leading to death and adding a major economic burden to the healthcare system....

Full description

Saved in:
Bibliographic Details
Published in:Current directions in biomedical engineering 2021-10, Vol.7 (2), p.239-242
Main Authors: Sicks, Ben, Stock, Christina, Peter, Sarah, Meurle, Tobias, Hoenes, Katharina, Spellerberg, Barbara, Hessling, Martin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial respiration is saving lives especially in the COVID-19 pandemic, but it also carries the risk to cause ventilator-associated pneumonia (VAP). VAP is one of the most common and severe nosocomial infections, often leading to death and adding a major economic burden to the healthcare system. To prevent a proliferation of microbial pathogens that cause VAP, an endotracheal tube (ETT) equipped with blue LEDs (LED-ETT) was developed. This blue wavelength exhibits antimicrobial properties but may also harm human tracheal cells at higher irradiances. Therefore, the aim of this study was to find the minimal required irradiance for microbial reduction of 1 log level in 24 h by applying LED-ETTs. A LED-ETT with 48 blue LEDs (450 nm) was fixed in a glass tube, which served as a trachea model. The investigation was carried out with irradiations of 4.2, 6.6 and 13.4 mW/cm² at 37 °C for 24 h. The experiments were performed with Acinetobacter kookii as a surrogate of Acinetobacter baumannii, which is classified as critical by the WHO. Samples of A. kookii suspensions were taken every 4 h during irradiation from the trachea model. Bacteria concentrations were quantified by determining colony forming units (CFU)/ml. A homogeneous irradiance of only 4.2 mW/cm² generated by the blue LEDs, at a LED forward current of 3.125 mA, is sufficient to achieve a 1 log reduction of A. kookii within 24 h. The total irradiation dose within this period was 360 J/cm2. Human cells survive this dose without cellular damage. Previous studies revealed that the pathogen A. baumannii is even more sensitive to blue light than A. kookii. Therefore, blue LED-ETTs are expected to reduce A. baumannii without harming human tracheal cells.
ISSN:2364-5504
2364-5504
DOI:10.1515/cdbme-2021-2061