Loading…
Supercritical Fluid Gaseous and Liquid States: A Review of Experimental Results
We review the experimental evidence, from both historic and modern literature of thermodynamic properties, for the non-existence of a critical-point singularity on Gibbs density surface, for the existence of a critical density hiatus line between 2-phase coexistence, for a supercritical mesophase wi...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2020-04, Vol.22 (4), p.437 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-dbd98a2fb36f890931903f021e7344f818bd4c65e5e55ee7a48edb392ea4e4cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-dbd98a2fb36f890931903f021e7344f818bd4c65e5e55ee7a48edb392ea4e4cd3 |
container_end_page | |
container_issue | 4 |
container_start_page | 437 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 22 |
creator | Khmelinskii, Igor Woodcock, Leslie V |
description | We review the experimental evidence, from both historic and modern literature of thermodynamic properties, for the non-existence of a critical-point singularity on Gibbs density surface, for the existence of a critical density hiatus line between 2-phase coexistence, for a supercritical mesophase with the colloidal characteristics of a one-component 2-state phase, and for the percolation loci that bound the existence of gaseous and liquid states. An absence of any critical-point singularity is supported by an overwhelming body of experimental evidence dating back to the original pressure-volume-temperature (
) equation-of-state measurements of CO
by Andrews in 1863, and extending to the present NIST-2019 Thermo-physical Properties data bank of more than 200 fluids. Historic heat capacity measurements in the 1960s that gave rise to the concept of "universality" are revisited. The only experimental evidence cited by the original protagonists of the van der Waals hypothesis, and universality theorists, is a misinterpretation of the isochoric heat capacity
. We conclude that the body of extensive scientific experimental evidence has never supported the Andrews-van der Waals theory of continuity of liquid and gas, or the existence of a singular critical point with universal scaling properties. All available thermodynamic experimental data, including modern computer experiments, are compatible with a critical divide at
, defined by the intersection of two percolation loci at gaseous and liquid phase bounds, and the existence of a colloid-like supercritical mesophase comprising both gaseous and liquid states. |
doi_str_mv | 10.3390/e22040437 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f2724ce1c77f4360a31d379cbeb7f2f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f2724ce1c77f4360a31d379cbeb7f2f5</doaj_id><sourcerecordid>2391150178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-dbd98a2fb36f890931903f021e7344f818bd4c65e5e55ee7a48edb392ea4e4cd3</originalsourceid><addsrcrecordid>eNpdkV1PHCEUhknTplrbC_9AM0lv9GJb4DDD0AsTY9SabGKi7TVh4KBsZocVZvz497Jdu9GGC8jhOe_5eAnZZ_Q7gKI_kHMqqAD5juwyqtRMAKXvX713yKecF5Ry4Kz5SHYAeNtwxnbJ5fW0wmRTGIM1fXXWT8FV5yZjnHJlBlfNw906dD2aEfPP6ri6wvuAD1X01eljSQ1LHMaSeYV56sf8mXzwps_45eXeI3_OTn-f_JrNL88vTo7nMysaNc5c51RruO-g8a2iCpii4ClnKEEI37K2c8I2NZZTI0ojWnQdKI5GoLAO9sjFRtdFs9Cr0oZJTzqaoP8GYrrRJpWZetSeSy4sMiulF9BQA8yBVLbDTnru66J1tNFaTd0SnS0DJdO_EX37M4RbfRPvtaxZoxgtAgcvAineTZhHvQzZYt-bYb1HzUXTFqNK0YJ--w9dxCkNZVWag2Kspky2hTrcUDbFnBP6bTOM6rXlemt5Yb--7n5L_vMYngFk9KXQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391150178</pqid></control><display><type>article</type><title>Supercritical Fluid Gaseous and Liquid States: A Review of Experimental Results</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Khmelinskii, Igor ; Woodcock, Leslie V</creator><creatorcontrib>Khmelinskii, Igor ; Woodcock, Leslie V</creatorcontrib><description>We review the experimental evidence, from both historic and modern literature of thermodynamic properties, for the non-existence of a critical-point singularity on Gibbs density surface, for the existence of a critical density hiatus line between 2-phase coexistence, for a supercritical mesophase with the colloidal characteristics of a one-component 2-state phase, and for the percolation loci that bound the existence of gaseous and liquid states. An absence of any critical-point singularity is supported by an overwhelming body of experimental evidence dating back to the original pressure-volume-temperature (
) equation-of-state measurements of CO
by Andrews in 1863, and extending to the present NIST-2019 Thermo-physical Properties data bank of more than 200 fluids. Historic heat capacity measurements in the 1960s that gave rise to the concept of "universality" are revisited. The only experimental evidence cited by the original protagonists of the van der Waals hypothesis, and universality theorists, is a misinterpretation of the isochoric heat capacity
. We conclude that the body of extensive scientific experimental evidence has never supported the Andrews-van der Waals theory of continuity of liquid and gas, or the existence of a singular critical point with universal scaling properties. All available thermodynamic experimental data, including modern computer experiments, are compatible with a critical divide at
, defined by the intersection of two percolation loci at gaseous and liquid phase bounds, and the existence of a colloid-like supercritical mesophase comprising both gaseous and liquid states.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e22040437</identifier><identifier>PMID: 33286211</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Critical point ; Density ; Experiments ; Fluids ; gas-liquid ; Hypotheses ; Liquid phases ; Loci ; Mesophase ; Percolation ; Physical properties ; Review ; Singularities ; Specific heat ; supercritical fluid ; Supercritical fluids ; supercritical mesophase ; Thermodynamic properties ; universality hypothesis</subject><ispartof>Entropy (Basel, Switzerland), 2020-04, Vol.22 (4), p.437</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-dbd98a2fb36f890931903f021e7344f818bd4c65e5e55ee7a48edb392ea4e4cd3</citedby><cites>FETCH-LOGICAL-c469t-dbd98a2fb36f890931903f021e7344f818bd4c65e5e55ee7a48edb392ea4e4cd3</cites><orcidid>0000-0002-6116-184X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2391150178/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2391150178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33286211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khmelinskii, Igor</creatorcontrib><creatorcontrib>Woodcock, Leslie V</creatorcontrib><title>Supercritical Fluid Gaseous and Liquid States: A Review of Experimental Results</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>We review the experimental evidence, from both historic and modern literature of thermodynamic properties, for the non-existence of a critical-point singularity on Gibbs density surface, for the existence of a critical density hiatus line between 2-phase coexistence, for a supercritical mesophase with the colloidal characteristics of a one-component 2-state phase, and for the percolation loci that bound the existence of gaseous and liquid states. An absence of any critical-point singularity is supported by an overwhelming body of experimental evidence dating back to the original pressure-volume-temperature (
) equation-of-state measurements of CO
by Andrews in 1863, and extending to the present NIST-2019 Thermo-physical Properties data bank of more than 200 fluids. Historic heat capacity measurements in the 1960s that gave rise to the concept of "universality" are revisited. The only experimental evidence cited by the original protagonists of the van der Waals hypothesis, and universality theorists, is a misinterpretation of the isochoric heat capacity
. We conclude that the body of extensive scientific experimental evidence has never supported the Andrews-van der Waals theory of continuity of liquid and gas, or the existence of a singular critical point with universal scaling properties. All available thermodynamic experimental data, including modern computer experiments, are compatible with a critical divide at
, defined by the intersection of two percolation loci at gaseous and liquid phase bounds, and the existence of a colloid-like supercritical mesophase comprising both gaseous and liquid states.</description><subject>Critical point</subject><subject>Density</subject><subject>Experiments</subject><subject>Fluids</subject><subject>gas-liquid</subject><subject>Hypotheses</subject><subject>Liquid phases</subject><subject>Loci</subject><subject>Mesophase</subject><subject>Percolation</subject><subject>Physical properties</subject><subject>Review</subject><subject>Singularities</subject><subject>Specific heat</subject><subject>supercritical fluid</subject><subject>Supercritical fluids</subject><subject>supercritical mesophase</subject><subject>Thermodynamic properties</subject><subject>universality hypothesis</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1PHCEUhknTplrbC_9AM0lv9GJb4DDD0AsTY9SabGKi7TVh4KBsZocVZvz497Jdu9GGC8jhOe_5eAnZZ_Q7gKI_kHMqqAD5juwyqtRMAKXvX713yKecF5Ry4Kz5SHYAeNtwxnbJ5fW0wmRTGIM1fXXWT8FV5yZjnHJlBlfNw906dD2aEfPP6ri6wvuAD1X01eljSQ1LHMaSeYV56sf8mXzwps_45eXeI3_OTn-f_JrNL88vTo7nMysaNc5c51RruO-g8a2iCpii4ClnKEEI37K2c8I2NZZTI0ojWnQdKI5GoLAO9sjFRtdFs9Cr0oZJTzqaoP8GYrrRJpWZetSeSy4sMiulF9BQA8yBVLbDTnru66J1tNFaTd0SnS0DJdO_EX37M4RbfRPvtaxZoxgtAgcvAineTZhHvQzZYt-bYb1HzUXTFqNK0YJ--w9dxCkNZVWag2Kspky2hTrcUDbFnBP6bTOM6rXlemt5Yb--7n5L_vMYngFk9KXQ</recordid><startdate>20200413</startdate><enddate>20200413</enddate><creator>Khmelinskii, Igor</creator><creator>Woodcock, Leslie V</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6116-184X</orcidid></search><sort><creationdate>20200413</creationdate><title>Supercritical Fluid Gaseous and Liquid States: A Review of Experimental Results</title><author>Khmelinskii, Igor ; Woodcock, Leslie V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-dbd98a2fb36f890931903f021e7344f818bd4c65e5e55ee7a48edb392ea4e4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Critical point</topic><topic>Density</topic><topic>Experiments</topic><topic>Fluids</topic><topic>gas-liquid</topic><topic>Hypotheses</topic><topic>Liquid phases</topic><topic>Loci</topic><topic>Mesophase</topic><topic>Percolation</topic><topic>Physical properties</topic><topic>Review</topic><topic>Singularities</topic><topic>Specific heat</topic><topic>supercritical fluid</topic><topic>Supercritical fluids</topic><topic>supercritical mesophase</topic><topic>Thermodynamic properties</topic><topic>universality hypothesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khmelinskii, Igor</creatorcontrib><creatorcontrib>Woodcock, Leslie V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khmelinskii, Igor</au><au>Woodcock, Leslie V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercritical Fluid Gaseous and Liquid States: A Review of Experimental Results</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2020-04-13</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>437</spage><pages>437-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>We review the experimental evidence, from both historic and modern literature of thermodynamic properties, for the non-existence of a critical-point singularity on Gibbs density surface, for the existence of a critical density hiatus line between 2-phase coexistence, for a supercritical mesophase with the colloidal characteristics of a one-component 2-state phase, and for the percolation loci that bound the existence of gaseous and liquid states. An absence of any critical-point singularity is supported by an overwhelming body of experimental evidence dating back to the original pressure-volume-temperature (
) equation-of-state measurements of CO
by Andrews in 1863, and extending to the present NIST-2019 Thermo-physical Properties data bank of more than 200 fluids. Historic heat capacity measurements in the 1960s that gave rise to the concept of "universality" are revisited. The only experimental evidence cited by the original protagonists of the van der Waals hypothesis, and universality theorists, is a misinterpretation of the isochoric heat capacity
. We conclude that the body of extensive scientific experimental evidence has never supported the Andrews-van der Waals theory of continuity of liquid and gas, or the existence of a singular critical point with universal scaling properties. All available thermodynamic experimental data, including modern computer experiments, are compatible with a critical divide at
, defined by the intersection of two percolation loci at gaseous and liquid phase bounds, and the existence of a colloid-like supercritical mesophase comprising both gaseous and liquid states.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33286211</pmid><doi>10.3390/e22040437</doi><orcidid>https://orcid.org/0000-0002-6116-184X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2020-04, Vol.22 (4), p.437 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f2724ce1c77f4360a31d379cbeb7f2f5 |
source | Open Access: PubMed Central; Publicly Available Content Database; DOAJ Directory of Open Access Journals |
subjects | Critical point Density Experiments Fluids gas-liquid Hypotheses Liquid phases Loci Mesophase Percolation Physical properties Review Singularities Specific heat supercritical fluid Supercritical fluids supercritical mesophase Thermodynamic properties universality hypothesis |
title | Supercritical Fluid Gaseous and Liquid States: A Review of Experimental Results |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercritical%20Fluid%20Gaseous%20and%20Liquid%20States:%20A%20Review%20of%20Experimental%20Results&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Khmelinskii,%20Igor&rft.date=2020-04-13&rft.volume=22&rft.issue=4&rft.spage=437&rft.pages=437-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e22040437&rft_dat=%3Cproquest_doaj_%3E2391150178%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-dbd98a2fb36f890931903f021e7344f818bd4c65e5e55ee7a48edb392ea4e4cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391150178&rft_id=info:pmid/33286211&rfr_iscdi=true |