Loading…

Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor

The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are us...

Full description

Saved in:
Bibliographic Details
Published in:Batteries (Basel) 2023-10, Vol.9 (10), p.512
Main Authors: Kim, Inkyum, San, Su Thiri, Mendhe, Avinash C., Dhas, Suprimkumar D., Jeon, Seung-Bae, Kim, Daewon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893
cites cdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893
container_end_page
container_issue 10
container_start_page 512
container_title Batteries (Basel)
container_volume 9
creator Kim, Inkyum
San, Su Thiri
Mendhe, Avinash C.
Dhas, Suprimkumar D.
Jeon, Seung-Bae
Kim, Daewon
description The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future.
doi_str_mv 10.3390/batteries9100512
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f279e564da374e0c8182d59272fbe8bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771911110</galeid><doaj_id>oai_doaj_org_article_f279e564da374e0c8182d59272fbe8bc</doaj_id><sourcerecordid>A771911110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhofQQkKSe46GnDeV7Zmx57hd0jSQktKPs9HY8qwXZz31eA_593GybSm1DRIveh8kq2muONxIOcCHEUuhHGgZOEDHxUlzJiSXK-DQvfsnP20ul2UHAFwrJYQ6a5ZvW0oxTcFiZLh37DaSLTnZLT29aV9zmimXymbJs48hOZoyOhwjsc02IPtysCHiROyO4h93fC7E1vMcAzlWEvt-qAyLM9pQUr5o3nuMC13-jufNz0-3PzafVw-Pd_eb9cPKtlyXFffcaegRhhYRu5FzDx5wQEcdemx7q0fstSYLoidSraL6UHQWvEA9yPPm_sh1CXdmzuEJ87NJGMybkPJksE5mIxkv1EBd3zqUqiWwmmvhukEo4UfSo62s6yNrzunXgZZidumQ97V9I7QWEqRQvFbdHKsmrNCw96lktPW6199Me_Kh6mul-MDrgWqAo8HmtCyZ_N82OZjX1Zr_VytfALmnmi0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882303271</pqid></control><display><type>article</type><title>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</title><source>Publicly Available Content Database</source><creator>Kim, Inkyum ; San, Su Thiri ; Mendhe, Avinash C. ; Dhas, Suprimkumar D. ; Jeon, Seung-Bae ; Kim, Daewon</creator><creatorcontrib>Kim, Inkyum ; San, Su Thiri ; Mendhe, Avinash C. ; Dhas, Suprimkumar D. ; Jeon, Seung-Bae ; Kim, Daewon</creatorcontrib><description>The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future.</description><identifier>ISSN: 2313-0105</identifier><identifier>EISSN: 2313-0105</identifier><identifier>DOI: 10.3390/batteries9100512</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Analysis ; biodegradability ; Capacitance ; Carbohydrates ; Charge transfer ; chia seed mucilage ; Composition ; Design and construction ; Discharge ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrolytes ; Electrons ; Energy storage ; Flexible components ; gel electrolyte ; Hydrogels ; Materials ; Methods ; Molten salt electrolytes ; Polymers ; Portable equipment ; Rheological properties ; Rheology ; Seeds ; Shear thinning (liquids) ; Solid electrolytes ; Spectrum analysis ; supercapacitor ; Supercapacitors ; Thermal stability ; Ultracapacitors ; Voltammetry</subject><ispartof>Batteries (Basel), 2023-10, Vol.9 (10), p.512</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</citedby><cites>FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</cites><orcidid>0000-0003-1246-5035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882303271/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882303271?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kim, Inkyum</creatorcontrib><creatorcontrib>San, Su Thiri</creatorcontrib><creatorcontrib>Mendhe, Avinash C.</creatorcontrib><creatorcontrib>Dhas, Suprimkumar D.</creatorcontrib><creatorcontrib>Jeon, Seung-Bae</creatorcontrib><creatorcontrib>Kim, Daewon</creatorcontrib><title>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</title><title>Batteries (Basel)</title><description>The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future.</description><subject>Activated carbon</subject><subject>Analysis</subject><subject>biodegradability</subject><subject>Capacitance</subject><subject>Carbohydrates</subject><subject>Charge transfer</subject><subject>chia seed mucilage</subject><subject>Composition</subject><subject>Design and construction</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Flexible components</subject><subject>gel electrolyte</subject><subject>Hydrogels</subject><subject>Materials</subject><subject>Methods</subject><subject>Molten salt electrolytes</subject><subject>Polymers</subject><subject>Portable equipment</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Seeds</subject><subject>Shear thinning (liquids)</subject><subject>Solid electrolytes</subject><subject>Spectrum analysis</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Thermal stability</subject><subject>Ultracapacitors</subject><subject>Voltammetry</subject><issn>2313-0105</issn><issn>2313-0105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1rHDEMhofQQkKSe46GnDeV7Zmx57hd0jSQktKPs9HY8qwXZz31eA_593GybSm1DRIveh8kq2muONxIOcCHEUuhHGgZOEDHxUlzJiSXK-DQvfsnP20ul2UHAFwrJYQ6a5ZvW0oxTcFiZLh37DaSLTnZLT29aV9zmimXymbJs48hOZoyOhwjsc02IPtysCHiROyO4h93fC7E1vMcAzlWEvt-qAyLM9pQUr5o3nuMC13-jufNz0-3PzafVw-Pd_eb9cPKtlyXFffcaegRhhYRu5FzDx5wQEcdemx7q0fstSYLoidSraL6UHQWvEA9yPPm_sh1CXdmzuEJ87NJGMybkPJksE5mIxkv1EBd3zqUqiWwmmvhukEo4UfSo62s6yNrzunXgZZidumQ97V9I7QWEqRQvFbdHKsmrNCw96lktPW6199Me_Kh6mul-MDrgWqAo8HmtCyZ_N82OZjX1Zr_VytfALmnmi0</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kim, Inkyum</creator><creator>San, Su Thiri</creator><creator>Mendhe, Avinash C.</creator><creator>Dhas, Suprimkumar D.</creator><creator>Jeon, Seung-Bae</creator><creator>Kim, Daewon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1246-5035</orcidid></search><sort><creationdate>20231001</creationdate><title>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</title><author>Kim, Inkyum ; San, Su Thiri ; Mendhe, Avinash C. ; Dhas, Suprimkumar D. ; Jeon, Seung-Bae ; Kim, Daewon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activated carbon</topic><topic>Analysis</topic><topic>biodegradability</topic><topic>Capacitance</topic><topic>Carbohydrates</topic><topic>Charge transfer</topic><topic>chia seed mucilage</topic><topic>Composition</topic><topic>Design and construction</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Flexible components</topic><topic>gel electrolyte</topic><topic>Hydrogels</topic><topic>Materials</topic><topic>Methods</topic><topic>Molten salt electrolytes</topic><topic>Polymers</topic><topic>Portable equipment</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Seeds</topic><topic>Shear thinning (liquids)</topic><topic>Solid electrolytes</topic><topic>Spectrum analysis</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Thermal stability</topic><topic>Ultracapacitors</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Inkyum</creatorcontrib><creatorcontrib>San, Su Thiri</creatorcontrib><creatorcontrib>Mendhe, Avinash C.</creatorcontrib><creatorcontrib>Dhas, Suprimkumar D.</creatorcontrib><creatorcontrib>Jeon, Seung-Bae</creatorcontrib><creatorcontrib>Kim, Daewon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Batteries (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Inkyum</au><au>San, Su Thiri</au><au>Mendhe, Avinash C.</au><au>Dhas, Suprimkumar D.</au><au>Jeon, Seung-Bae</au><au>Kim, Daewon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</atitle><jtitle>Batteries (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>9</volume><issue>10</issue><spage>512</spage><pages>512-</pages><issn>2313-0105</issn><eissn>2313-0105</eissn><abstract>The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/batteries9100512</doi><orcidid>https://orcid.org/0000-0003-1246-5035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-0105
ispartof Batteries (Basel), 2023-10, Vol.9 (10), p.512
issn 2313-0105
2313-0105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f279e564da374e0c8182d59272fbe8bc
source Publicly Available Content Database
subjects Activated carbon
Analysis
biodegradability
Capacitance
Carbohydrates
Charge transfer
chia seed mucilage
Composition
Design and construction
Discharge
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemistry
Electrodes
Electrolytes
Electrons
Energy storage
Flexible components
gel electrolyte
Hydrogels
Materials
Methods
Molten salt electrolytes
Polymers
Portable equipment
Rheological properties
Rheology
Seeds
Shear thinning (liquids)
Solid electrolytes
Spectrum analysis
supercapacitor
Supercapacitors
Thermal stability
Ultracapacitors
Voltammetry
title Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20and%20Electrochemical%20Properties%20of%20Biodegradable%20Chia%20Mucilage%20Gel%20Electrolyte%20Applied%20to%20Supercapacitor&rft.jtitle=Batteries%20(Basel)&rft.au=Kim,%20Inkyum&rft.date=2023-10-01&rft.volume=9&rft.issue=10&rft.spage=512&rft.pages=512-&rft.issn=2313-0105&rft.eissn=2313-0105&rft_id=info:doi/10.3390/batteries9100512&rft_dat=%3Cgale_doaj_%3EA771911110%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882303271&rft_id=info:pmid/&rft_galeid=A771911110&rfr_iscdi=true