Loading…
Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor
The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are us...
Saved in:
Published in: | Batteries (Basel) 2023-10, Vol.9 (10), p.512 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893 |
container_end_page | |
container_issue | 10 |
container_start_page | 512 |
container_title | Batteries (Basel) |
container_volume | 9 |
creator | Kim, Inkyum San, Su Thiri Mendhe, Avinash C. Dhas, Suprimkumar D. Jeon, Seung-Bae Kim, Daewon |
description | The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future. |
doi_str_mv | 10.3390/batteries9100512 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f279e564da374e0c8182d59272fbe8bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771911110</galeid><doaj_id>oai_doaj_org_article_f279e564da374e0c8182d59272fbe8bc</doaj_id><sourcerecordid>A771911110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhofQQkKSe46GnDeV7Zmx57hd0jSQktKPs9HY8qwXZz31eA_593GybSm1DRIveh8kq2muONxIOcCHEUuhHGgZOEDHxUlzJiSXK-DQvfsnP20ul2UHAFwrJYQ6a5ZvW0oxTcFiZLh37DaSLTnZLT29aV9zmimXymbJs48hOZoyOhwjsc02IPtysCHiROyO4h93fC7E1vMcAzlWEvt-qAyLM9pQUr5o3nuMC13-jufNz0-3PzafVw-Pd_eb9cPKtlyXFffcaegRhhYRu5FzDx5wQEcdemx7q0fstSYLoidSraL6UHQWvEA9yPPm_sh1CXdmzuEJ87NJGMybkPJksE5mIxkv1EBd3zqUqiWwmmvhukEo4UfSo62s6yNrzunXgZZidumQ97V9I7QWEqRQvFbdHKsmrNCw96lktPW6199Me_Kh6mul-MDrgWqAo8HmtCyZ_N82OZjX1Zr_VytfALmnmi0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882303271</pqid></control><display><type>article</type><title>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</title><source>Publicly Available Content Database</source><creator>Kim, Inkyum ; San, Su Thiri ; Mendhe, Avinash C. ; Dhas, Suprimkumar D. ; Jeon, Seung-Bae ; Kim, Daewon</creator><creatorcontrib>Kim, Inkyum ; San, Su Thiri ; Mendhe, Avinash C. ; Dhas, Suprimkumar D. ; Jeon, Seung-Bae ; Kim, Daewon</creatorcontrib><description>The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future.</description><identifier>ISSN: 2313-0105</identifier><identifier>EISSN: 2313-0105</identifier><identifier>DOI: 10.3390/batteries9100512</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Analysis ; biodegradability ; Capacitance ; Carbohydrates ; Charge transfer ; chia seed mucilage ; Composition ; Design and construction ; Discharge ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrolytes ; Electrons ; Energy storage ; Flexible components ; gel electrolyte ; Hydrogels ; Materials ; Methods ; Molten salt electrolytes ; Polymers ; Portable equipment ; Rheological properties ; Rheology ; Seeds ; Shear thinning (liquids) ; Solid electrolytes ; Spectrum analysis ; supercapacitor ; Supercapacitors ; Thermal stability ; Ultracapacitors ; Voltammetry</subject><ispartof>Batteries (Basel), 2023-10, Vol.9 (10), p.512</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</citedby><cites>FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</cites><orcidid>0000-0003-1246-5035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882303271/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882303271?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kim, Inkyum</creatorcontrib><creatorcontrib>San, Su Thiri</creatorcontrib><creatorcontrib>Mendhe, Avinash C.</creatorcontrib><creatorcontrib>Dhas, Suprimkumar D.</creatorcontrib><creatorcontrib>Jeon, Seung-Bae</creatorcontrib><creatorcontrib>Kim, Daewon</creatorcontrib><title>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</title><title>Batteries (Basel)</title><description>The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future.</description><subject>Activated carbon</subject><subject>Analysis</subject><subject>biodegradability</subject><subject>Capacitance</subject><subject>Carbohydrates</subject><subject>Charge transfer</subject><subject>chia seed mucilage</subject><subject>Composition</subject><subject>Design and construction</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Flexible components</subject><subject>gel electrolyte</subject><subject>Hydrogels</subject><subject>Materials</subject><subject>Methods</subject><subject>Molten salt electrolytes</subject><subject>Polymers</subject><subject>Portable equipment</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Seeds</subject><subject>Shear thinning (liquids)</subject><subject>Solid electrolytes</subject><subject>Spectrum analysis</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Thermal stability</subject><subject>Ultracapacitors</subject><subject>Voltammetry</subject><issn>2313-0105</issn><issn>2313-0105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1rHDEMhofQQkKSe46GnDeV7Zmx57hd0jSQktKPs9HY8qwXZz31eA_593GybSm1DRIveh8kq2muONxIOcCHEUuhHGgZOEDHxUlzJiSXK-DQvfsnP20ul2UHAFwrJYQ6a5ZvW0oxTcFiZLh37DaSLTnZLT29aV9zmimXymbJs48hOZoyOhwjsc02IPtysCHiROyO4h93fC7E1vMcAzlWEvt-qAyLM9pQUr5o3nuMC13-jufNz0-3PzafVw-Pd_eb9cPKtlyXFffcaegRhhYRu5FzDx5wQEcdemx7q0fstSYLoidSraL6UHQWvEA9yPPm_sh1CXdmzuEJ87NJGMybkPJksE5mIxkv1EBd3zqUqiWwmmvhukEo4UfSo62s6yNrzunXgZZidumQ97V9I7QWEqRQvFbdHKsmrNCw96lktPW6199Me_Kh6mul-MDrgWqAo8HmtCyZ_N82OZjX1Zr_VytfALmnmi0</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kim, Inkyum</creator><creator>San, Su Thiri</creator><creator>Mendhe, Avinash C.</creator><creator>Dhas, Suprimkumar D.</creator><creator>Jeon, Seung-Bae</creator><creator>Kim, Daewon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1246-5035</orcidid></search><sort><creationdate>20231001</creationdate><title>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</title><author>Kim, Inkyum ; San, Su Thiri ; Mendhe, Avinash C. ; Dhas, Suprimkumar D. ; Jeon, Seung-Bae ; Kim, Daewon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activated carbon</topic><topic>Analysis</topic><topic>biodegradability</topic><topic>Capacitance</topic><topic>Carbohydrates</topic><topic>Charge transfer</topic><topic>chia seed mucilage</topic><topic>Composition</topic><topic>Design and construction</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Flexible components</topic><topic>gel electrolyte</topic><topic>Hydrogels</topic><topic>Materials</topic><topic>Methods</topic><topic>Molten salt electrolytes</topic><topic>Polymers</topic><topic>Portable equipment</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Seeds</topic><topic>Shear thinning (liquids)</topic><topic>Solid electrolytes</topic><topic>Spectrum analysis</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Thermal stability</topic><topic>Ultracapacitors</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Inkyum</creatorcontrib><creatorcontrib>San, Su Thiri</creatorcontrib><creatorcontrib>Mendhe, Avinash C.</creatorcontrib><creatorcontrib>Dhas, Suprimkumar D.</creatorcontrib><creatorcontrib>Jeon, Seung-Bae</creatorcontrib><creatorcontrib>Kim, Daewon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Batteries (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Inkyum</au><au>San, Su Thiri</au><au>Mendhe, Avinash C.</au><au>Dhas, Suprimkumar D.</au><au>Jeon, Seung-Bae</au><au>Kim, Daewon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor</atitle><jtitle>Batteries (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>9</volume><issue>10</issue><spage>512</spage><pages>512-</pages><issn>2313-0105</issn><eissn>2313-0105</eissn><abstract>The flexible energy storage device of high demand in wearable and portable electronics. Flexible supercapacitors have benefits over flexible batteries, and their development relies on the use of flexible components. Gel polymer electrolytes have the merits of liquid and solid electrolytes and are used in flexible devices. In this study, a gel derived from chia seed was used as a flexible electrolyte material, and its rheological, thermal, and electrochemical properties were investigated. High thermal stability and shear thinning behavior were observed via the electrolyte state of the chia mucilage gel. Compared to the conventional salt electrolyte, the chia mucilage gel electrolyte-based supercapacitor exhibited a more rectangular cyclic voltammetry (CV) curve, longer discharging time in galvanostatic charge–discharge (GCD) analysis, and low charge transfer resistance in electrochemical impedance spectroscopy (EIS). The maximum specific capacitance of 7.77 F g−1 and power density of 287.7 W kg−1 were measured, and stable capacitance retention of 94% was achieved after 10,000 cycles of charge/discharge with harsh input conditions. The biodegradability was also confirmed by the degraded mucilage film in soil after 30 days. The plant-driven chia mucilage gel electrolyte can facilitate the realization of flexible supercapacitors for the energy storage devices of the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/batteries9100512</doi><orcidid>https://orcid.org/0000-0003-1246-5035</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-0105 |
ispartof | Batteries (Basel), 2023-10, Vol.9 (10), p.512 |
issn | 2313-0105 2313-0105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f279e564da374e0c8182d59272fbe8bc |
source | Publicly Available Content Database |
subjects | Activated carbon Analysis biodegradability Capacitance Carbohydrates Charge transfer chia seed mucilage Composition Design and construction Discharge Electrochemical analysis Electrochemical impedance spectroscopy Electrochemistry Electrodes Electrolytes Electrons Energy storage Flexible components gel electrolyte Hydrogels Materials Methods Molten salt electrolytes Polymers Portable equipment Rheological properties Rheology Seeds Shear thinning (liquids) Solid electrolytes Spectrum analysis supercapacitor Supercapacitors Thermal stability Ultracapacitors Voltammetry |
title | Rheological and Electrochemical Properties of Biodegradable Chia Mucilage Gel Electrolyte Applied to Supercapacitor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20and%20Electrochemical%20Properties%20of%20Biodegradable%20Chia%20Mucilage%20Gel%20Electrolyte%20Applied%20to%20Supercapacitor&rft.jtitle=Batteries%20(Basel)&rft.au=Kim,%20Inkyum&rft.date=2023-10-01&rft.volume=9&rft.issue=10&rft.spage=512&rft.pages=512-&rft.issn=2313-0105&rft.eissn=2313-0105&rft_id=info:doi/10.3390/batteries9100512&rft_dat=%3Cgale_doaj_%3EA771911110%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-1f1d806a094aaa5b11f0f0a9ade5afa46c8ba688ec026ee747e47ea25c0f2a893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882303271&rft_id=info:pmid/&rft_galeid=A771911110&rfr_iscdi=true |