Loading…

Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pair...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-05, Vol.8 (1), p.15506-15506, Article 15506
Main Authors: Huber, Daniel, Reindl, Marcus, Huo, Yongheng, Huang, Huiying, Wildmann, Johannes S., Schmidt, Oliver G., Rastelli, Armando, Trotta, Rinaldo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-1b2f92b49f842aaa87ccedbf5e5fd64b817f9e62791c1b0155832b0458122eff3
cites cdi_FETCH-LOGICAL-c578t-1b2f92b49f842aaa87ccedbf5e5fd64b817f9e62791c1b0155832b0458122eff3
container_end_page 15506
container_issue 1
container_start_page 15506
container_title Nature communications
container_volume 8
creator Huber, Daniel
Reindl, Marcus
Huo, Yongheng
Huang, Huiying
Wildmann, Johannes S.
Schmidt, Oliver G.
Rastelli, Armando
Trotta, Rinaldo
description The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. Scalable and integratable sources of entangled-photon pairs are an important building block for quantum photonic applications. Here, Huber et al . demonstrate that droplet-etched gallium arsenide quantum dots can emit highly indistinguishable photon pairs with a high degree of entanglement.
doi_str_mv 10.1038/ncomms15506
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f297098fc45640b691bcd6e0b1a9d61e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f297098fc45640b691bcd6e0b1a9d61e</doaj_id><sourcerecordid>1903165521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-1b2f92b49f842aaa87ccedbf5e5fd64b817f9e62791c1b0155832b0458122eff3</originalsourceid><addsrcrecordid>eNptks9rFDEUgAex2FJ78i4DXgRdm5dJZpKLUIq2hUIvFbyF_JzNMpNsk4yw_72pW8tWzCWPvI8v7yWvad4B-gKoY-dBx3nOQCnqXzUnGBFYwYC71wfxcXOW8wbV1XFghLxpjjGjhCEGJ83Paz-up13rg_G5-DAuPq-lmmwrg2lzSTGMNW1DkTWwpt2uY4khty7Fuc27ebYled1eyYvcPiwylGVuTSz5bXPk5JTt2dN-2vz4_u3-8np1e3d1c3lxu9J0YGUFCjuOFeGOESylZIPW1ihHLXWmJ4rB4Ljt8cBBg0K1UdZhhQhlgLF1rjttbvZeE-VGbJOfZdqJKL34cxDTKGQqXk9WOMwHxJnThPYEqZ6D0qa3SIHkpgdbXV_3ru2iZmt07TrJ6YX0ZSb4tRjjL0FrPZR2VfDxSZDiw2JzEbPP2k6TDDYuWQBHHfSUYqjoh3_QTVxSqE_1SGEykNp6pT7tKZ1izsm652IAiccBEAcDUOn3h_U_s3-_uwKf90CuqTDadHDpf3y_ARPlvQ8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902474817</pqid></control><display><type>article</type><title>Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huber, Daniel ; Reindl, Marcus ; Huo, Yongheng ; Huang, Huiying ; Wildmann, Johannes S. ; Schmidt, Oliver G. ; Rastelli, Armando ; Trotta, Rinaldo</creator><creatorcontrib>Huber, Daniel ; Reindl, Marcus ; Huo, Yongheng ; Huang, Huiying ; Wildmann, Johannes S. ; Schmidt, Oliver G. ; Rastelli, Armando ; Trotta, Rinaldo</creatorcontrib><description>The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. Scalable and integratable sources of entangled-photon pairs are an important building block for quantum photonic applications. Here, Huber et al . demonstrate that droplet-etched gallium arsenide quantum dots can emit highly indistinguishable photon pairs with a high degree of entanglement.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms15506</identifier><identifier>PMID: 28548081</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1017 ; 639/766/400/482 ; 639/766/483/3925 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2017-05, Vol.8 (1), p.15506-15506, Article 15506</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group May 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-1b2f92b49f842aaa87ccedbf5e5fd64b817f9e62791c1b0155832b0458122eff3</citedby><cites>FETCH-LOGICAL-c578t-1b2f92b49f842aaa87ccedbf5e5fd64b817f9e62791c1b0155832b0458122eff3</cites><orcidid>0000-0002-0310-3078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1902474817/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1902474817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28548081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huber, Daniel</creatorcontrib><creatorcontrib>Reindl, Marcus</creatorcontrib><creatorcontrib>Huo, Yongheng</creatorcontrib><creatorcontrib>Huang, Huiying</creatorcontrib><creatorcontrib>Wildmann, Johannes S.</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Rastelli, Armando</creatorcontrib><creatorcontrib>Trotta, Rinaldo</creatorcontrib><title>Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. Scalable and integratable sources of entangled-photon pairs are an important building block for quantum photonic applications. Here, Huber et al . demonstrate that droplet-etched gallium arsenide quantum dots can emit highly indistinguishable photon pairs with a high degree of entanglement.</description><subject>639/624/399/1017</subject><subject>639/766/400/482</subject><subject>639/766/483/3925</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFDEUgAex2FJ78i4DXgRdm5dJZpKLUIq2hUIvFbyF_JzNMpNsk4yw_72pW8tWzCWPvI8v7yWvad4B-gKoY-dBx3nOQCnqXzUnGBFYwYC71wfxcXOW8wbV1XFghLxpjjGjhCEGJ83Paz-up13rg_G5-DAuPq-lmmwrg2lzSTGMNW1DkTWwpt2uY4khty7Fuc27ebYled1eyYvcPiwylGVuTSz5bXPk5JTt2dN-2vz4_u3-8np1e3d1c3lxu9J0YGUFCjuOFeGOESylZIPW1ihHLXWmJ4rB4Ljt8cBBg0K1UdZhhQhlgLF1rjttbvZeE-VGbJOfZdqJKL34cxDTKGQqXk9WOMwHxJnThPYEqZ6D0qa3SIHkpgdbXV_3ru2iZmt07TrJ6YX0ZSb4tRjjL0FrPZR2VfDxSZDiw2JzEbPP2k6TDDYuWQBHHfSUYqjoh3_QTVxSqE_1SGEykNp6pT7tKZ1izsm652IAiccBEAcDUOn3h_U_s3-_uwKf90CuqTDadHDpf3y_ARPlvQ8</recordid><startdate>20170526</startdate><enddate>20170526</enddate><creator>Huber, Daniel</creator><creator>Reindl, Marcus</creator><creator>Huo, Yongheng</creator><creator>Huang, Huiying</creator><creator>Wildmann, Johannes S.</creator><creator>Schmidt, Oliver G.</creator><creator>Rastelli, Armando</creator><creator>Trotta, Rinaldo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0310-3078</orcidid></search><sort><creationdate>20170526</creationdate><title>Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots</title><author>Huber, Daniel ; Reindl, Marcus ; Huo, Yongheng ; Huang, Huiying ; Wildmann, Johannes S. ; Schmidt, Oliver G. ; Rastelli, Armando ; Trotta, Rinaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-1b2f92b49f842aaa87ccedbf5e5fd64b817f9e62791c1b0155832b0458122eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/624/399/1017</topic><topic>639/766/400/482</topic><topic>639/766/483/3925</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huber, Daniel</creatorcontrib><creatorcontrib>Reindl, Marcus</creatorcontrib><creatorcontrib>Huo, Yongheng</creatorcontrib><creatorcontrib>Huang, Huiying</creatorcontrib><creatorcontrib>Wildmann, Johannes S.</creatorcontrib><creatorcontrib>Schmidt, Oliver G.</creatorcontrib><creatorcontrib>Rastelli, Armando</creatorcontrib><creatorcontrib>Trotta, Rinaldo</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huber, Daniel</au><au>Reindl, Marcus</au><au>Huo, Yongheng</au><au>Huang, Huiying</au><au>Wildmann, Johannes S.</au><au>Schmidt, Oliver G.</au><au>Rastelli, Armando</au><au>Trotta, Rinaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-05-26</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>15506</spage><epage>15506</epage><pages>15506-15506</pages><artnum>15506</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. Scalable and integratable sources of entangled-photon pairs are an important building block for quantum photonic applications. Here, Huber et al . demonstrate that droplet-etched gallium arsenide quantum dots can emit highly indistinguishable photon pairs with a high degree of entanglement.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28548081</pmid><doi>10.1038/ncomms15506</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0310-3078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2017-05, Vol.8 (1), p.15506-15506, Article 15506
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f297098fc45640b691bcd6e0b1a9d61e
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/399/1017
639/766/400/482
639/766/483/3925
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20indistinguishable%20and%20strongly%20entangled%20photons%20from%20symmetric%20GaAs%20quantum%20dots&rft.jtitle=Nature%20communications&rft.au=Huber,%20Daniel&rft.date=2017-05-26&rft.volume=8&rft.issue=1&rft.spage=15506&rft.epage=15506&rft.pages=15506-15506&rft.artnum=15506&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms15506&rft_dat=%3Cproquest_doaj_%3E1903165521%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-1b2f92b49f842aaa87ccedbf5e5fd64b817f9e62791c1b0155832b0458122eff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1902474817&rft_id=info:pmid/28548081&rfr_iscdi=true