Loading…
Improving earthquake prediction accuracy in Los Angeles with machine learning
This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging advanced machine learning and neural network models. We meticulously constructed a comprehensive feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating novel...
Saved in:
Published in: | Scientific reports 2024-10, Vol.14 (1), p.24440-54, Article 24440 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-fd20cf6ae8b390402015a89cc1fd7b460282f635401bfeb6b9f4dd059ed78b53 |
container_end_page | 54 |
container_issue | 1 |
container_start_page | 24440 |
container_title | Scientific reports |
container_volume | 14 |
creator | Yavas, Cemil Emre Chen, Lei Kadlec, Christopher Ji, Yiming |
description | This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging advanced machine learning and neural network models. We meticulously constructed a comprehensive feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating novel predictive features, we developed a robust subset capable of estimating the maximum potential earthquake magnitude. Our standout achievement is the creation of a feature set that, when applied with the Random Forest machine learning model, achieves a high accuracy in predicting the maximum earthquake category within the next 30 days. Among sixteen evaluated machine learning algorithms, Random Forest proved to be the most effective. Our findings underscore the transformative potential of machine learning and neural networks in enhancing earthquake prediction accuracy, offering significant advancements in seismic risk management and preparedness for Los Angeles. |
doi_str_mv | 10.1038/s41598-024-76483-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f2a480517ba943868636d1427d7b5bcd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f2a480517ba943868636d1427d7b5bcd</doaj_id><sourcerecordid>3118120672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-fd20cf6ae8b390402015a89cc1fd7b460282f635401bfeb6b9f4dd059ed78b53</originalsourceid><addsrcrecordid>eNp9kctu3CAUhq2qVROleYEuKqRuunEDB7BhVUVRLyNN1E32CAOeYWrDBOxc3r5knKZJF2UD4vznO5e_qt4T_JlgKs4yI1yKGgOr24YJWt-9qo4BM14DBXj97H1Unea8w-VwkIzIt9URlQyYkHBcXa7GfYo3PmyQ02naXs_6l0P75Kw3k48BaWPmpM098gGtY0bnYeMGl9Gtn7Zo1Gbrg0NDyQ2F8a560-shu9PH-6S6-vb16uJHvf75fXVxvq4NA5jq3gI2faOd6KjEDAMmXAtpDOlt27EGg4C-oZxh0vWuazrZM2sxl862ouP0pFotWBv1Tu2TH3W6V1F7dfiIaaPKLN4MTvWgmcCctJ2WjIpGNLSxhEFbCvHO2ML6srD2czc6a1yYkh5eQF9Ggt-qTbxRhJQNckkL4dMjIcXr2eVJjT4bNww6uDhnRQkRFHMqHhr_-I90F-cUyqoOKgK4aaGoYFGZFHNOrn_qhmD1YL5azFfFfHUwX92VpA_P53hK-WN1EdBFkEuomJj-1v4P9jdPPLrN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118120672</pqid></control><display><type>article</type><title>Improving earthquake prediction accuracy in Los Angeles with machine learning</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yavas, Cemil Emre ; Chen, Lei ; Kadlec, Christopher ; Ji, Yiming</creator><creatorcontrib>Yavas, Cemil Emre ; Chen, Lei ; Kadlec, Christopher ; Ji, Yiming</creatorcontrib><description>This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging advanced machine learning and neural network models. We meticulously constructed a comprehensive feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating novel predictive features, we developed a robust subset capable of estimating the maximum potential earthquake magnitude. Our standout achievement is the creation of a feature set that, when applied with the Random Forest machine learning model, achieves a high accuracy in predicting the maximum earthquake category within the next 30 days. Among sixteen evaluated machine learning algorithms, Random Forest proved to be the most effective. Our findings underscore the transformative potential of machine learning and neural networks in enhancing earthquake prediction accuracy, offering significant advancements in seismic risk management and preparedness for Los Angeles.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-76483-x</identifier><identifier>PMID: 39424892</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705 ; 704/2151 ; 704/4111 ; Accuracy ; Algorithms ; Earthquake prediction ; Earthquakes ; Emergency preparedness ; Humanities and Social Sciences ; Learning algorithms ; Machine learning ; multidisciplinary ; Neural networks ; Risk management ; Science ; Science (multidisciplinary) ; Seismic activity</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.24440-54, Article 24440</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-fd20cf6ae8b390402015a89cc1fd7b460282f635401bfeb6b9f4dd059ed78b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3118120672/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3118120672?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39424892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yavas, Cemil Emre</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Kadlec, Christopher</creatorcontrib><creatorcontrib>Ji, Yiming</creatorcontrib><title>Improving earthquake prediction accuracy in Los Angeles with machine learning</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging advanced machine learning and neural network models. We meticulously constructed a comprehensive feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating novel predictive features, we developed a robust subset capable of estimating the maximum potential earthquake magnitude. Our standout achievement is the creation of a feature set that, when applied with the Random Forest machine learning model, achieves a high accuracy in predicting the maximum earthquake category within the next 30 days. Among sixteen evaluated machine learning algorithms, Random Forest proved to be the most effective. Our findings underscore the transformative potential of machine learning and neural networks in enhancing earthquake prediction accuracy, offering significant advancements in seismic risk management and preparedness for Los Angeles.</description><subject>639/705</subject><subject>704/2151</subject><subject>704/4111</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>Emergency preparedness</subject><subject>Humanities and Social Sciences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Risk management</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seismic activity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu3CAUhq2qVROleYEuKqRuunEDB7BhVUVRLyNN1E32CAOeYWrDBOxc3r5knKZJF2UD4vznO5e_qt4T_JlgKs4yI1yKGgOr24YJWt-9qo4BM14DBXj97H1Unea8w-VwkIzIt9URlQyYkHBcXa7GfYo3PmyQ02naXs_6l0P75Kw3k48BaWPmpM098gGtY0bnYeMGl9Gtn7Zo1Gbrg0NDyQ2F8a560-shu9PH-6S6-vb16uJHvf75fXVxvq4NA5jq3gI2faOd6KjEDAMmXAtpDOlt27EGg4C-oZxh0vWuazrZM2sxl862ouP0pFotWBv1Tu2TH3W6V1F7dfiIaaPKLN4MTvWgmcCctJ2WjIpGNLSxhEFbCvHO2ML6srD2czc6a1yYkh5eQF9Ggt-qTbxRhJQNckkL4dMjIcXr2eVJjT4bNww6uDhnRQkRFHMqHhr_-I90F-cUyqoOKgK4aaGoYFGZFHNOrn_qhmD1YL5azFfFfHUwX92VpA_P53hK-WN1EdBFkEuomJj-1v4P9jdPPLrN</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Yavas, Cemil Emre</creator><creator>Chen, Lei</creator><creator>Kadlec, Christopher</creator><creator>Ji, Yiming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241018</creationdate><title>Improving earthquake prediction accuracy in Los Angeles with machine learning</title><author>Yavas, Cemil Emre ; Chen, Lei ; Kadlec, Christopher ; Ji, Yiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-fd20cf6ae8b390402015a89cc1fd7b460282f635401bfeb6b9f4dd059ed78b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705</topic><topic>704/2151</topic><topic>704/4111</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>Emergency preparedness</topic><topic>Humanities and Social Sciences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Risk management</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seismic activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yavas, Cemil Emre</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Kadlec, Christopher</creatorcontrib><creatorcontrib>Ji, Yiming</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yavas, Cemil Emre</au><au>Chen, Lei</au><au>Kadlec, Christopher</au><au>Ji, Yiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving earthquake prediction accuracy in Los Angeles with machine learning</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>24440</spage><epage>54</epage><pages>24440-54</pages><artnum>24440</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging advanced machine learning and neural network models. We meticulously constructed a comprehensive feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating novel predictive features, we developed a robust subset capable of estimating the maximum potential earthquake magnitude. Our standout achievement is the creation of a feature set that, when applied with the Random Forest machine learning model, achieves a high accuracy in predicting the maximum earthquake category within the next 30 days. Among sixteen evaluated machine learning algorithms, Random Forest proved to be the most effective. Our findings underscore the transformative potential of machine learning and neural networks in enhancing earthquake prediction accuracy, offering significant advancements in seismic risk management and preparedness for Los Angeles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39424892</pmid><doi>10.1038/s41598-024-76483-x</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-10, Vol.14 (1), p.24440-54, Article 24440 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f2a480517ba943868636d1427d7b5bcd |
source | ProQuest - Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705 704/2151 704/4111 Accuracy Algorithms Earthquake prediction Earthquakes Emergency preparedness Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Neural networks Risk management Science Science (multidisciplinary) Seismic activity |
title | Improving earthquake prediction accuracy in Los Angeles with machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20earthquake%20prediction%20accuracy%20in%20Los%20Angeles%20with%20machine%20learning&rft.jtitle=Scientific%20reports&rft.au=Yavas,%20Cemil%20Emre&rft.date=2024-10-18&rft.volume=14&rft.issue=1&rft.spage=24440&rft.epage=54&rft.pages=24440-54&rft.artnum=24440&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-76483-x&rft_dat=%3Cproquest_doaj_%3E3118120672%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-fd20cf6ae8b390402015a89cc1fd7b460282f635401bfeb6b9f4dd059ed78b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3118120672&rft_id=info:pmid/39424892&rfr_iscdi=true |