Loading…

Taylor theory associated with Hahn difference operator

In this paper, we establish Taylor theory based on Hahn’s difference operator D q , ω which is defined by D q , ω f ( t ) = f ( q t + ω ) − f ( t ) t ( q − 1 ) + ω , t ≠ ω 1 − q , where q ∈ ( 0 , 1 ) and ω is a positive number.

Saved in:
Bibliographic Details
Published in:Journal of inequalities and applications 2020-05, Vol.2020 (1), p.1-19, Article 124
Main Authors: Oraby, Karima, Hamza, Alaa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-c1a21cf887e05b0c2f7316a8b1296d43e7220c6b992fb3e6cc7ed108abb357b93
cites cdi_FETCH-LOGICAL-c429t-c1a21cf887e05b0c2f7316a8b1296d43e7220c6b992fb3e6cc7ed108abb357b93
container_end_page 19
container_issue 1
container_start_page 1
container_title Journal of inequalities and applications
container_volume 2020
creator Oraby, Karima
Hamza, Alaa
description In this paper, we establish Taylor theory based on Hahn’s difference operator D q , ω which is defined by D q , ω f ( t ) = f ( q t + ω ) − f ( t ) t ( q − 1 ) + ω , t ≠ ω 1 − q , where q ∈ ( 0 , 1 ) and ω is a positive number.
doi_str_mv 10.1186/s13660-020-02392-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f2a6f0c7f3e3418fa67e73206c04ae46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f2a6f0c7f3e3418fa67e73206c04ae46</doaj_id><sourcerecordid>2398418918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c1a21cf887e05b0c2f7316a8b1296d43e7220c6b992fb3e6cc7ed108abb357b93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz6vJZJuPoxS1hYKXCt5CNjtpt9SmJltk_71pV9STh2GG4X3fGR5Cbhi9Y0yJ-8S4ELSkcCiuoexPyIhR0CVU8Hb6Zz4nFymtKQXGVTUiYmH7TYhFt8IQ-8KmFFxrO2yKz7ZbFVO72hZN6z1G3Doswg6j7UK8ImfebhJef_dL8vr0uJhMy_nL82zyMC9dBborHbPAnFdKIh3X1IGXnAmragZaNBVHCUCdqLUGX3MUzklsGFW2rvlY1ppfktmQ2wS7NrvYvtvYm2Bbc1yEuDQ2dq3boPFghadOeo68YspbIVFyoMLRymIlctbtkLWL4WOPqTPrsI_b_L7JyFT2aKayCgaViyGliP7nKqPmwNoMrE1mbY6sTZ9NfDClLN4uMf5G_-P6AvasgXY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398418918</pqid></control><display><type>article</type><title>Taylor theory associated with Hahn difference operator</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Oraby, Karima ; Hamza, Alaa</creator><creatorcontrib>Oraby, Karima ; Hamza, Alaa</creatorcontrib><description>In this paper, we establish Taylor theory based on Hahn’s difference operator D q , ω which is defined by D q , ω f ( t ) = f ( q t + ω ) − f ( t ) t ( q − 1 ) + ω , t ≠ ω 1 − q , where q ∈ ( 0 , 1 ) and ω is a positive number.</description><identifier>ISSN: 1029-242X</identifier><identifier>ISSN: 1025-5834</identifier><identifier>EISSN: 1029-242X</identifier><identifier>DOI: 10.1186/s13660-020-02392-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Applications of Mathematics ; Finite differences ; Hahn difference operator D q , ω $D_{q,\omega} ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Taylor series</subject><ispartof>Journal of inequalities and applications, 2020-05, Vol.2020 (1), p.1-19, Article 124</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c1a21cf887e05b0c2f7316a8b1296d43e7220c6b992fb3e6cc7ed108abb357b93</citedby><cites>FETCH-LOGICAL-c429t-c1a21cf887e05b0c2f7316a8b1296d43e7220c6b992fb3e6cc7ed108abb357b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2398418918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2398418918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Oraby, Karima</creatorcontrib><creatorcontrib>Hamza, Alaa</creatorcontrib><title>Taylor theory associated with Hahn difference operator</title><title>Journal of inequalities and applications</title><addtitle>J Inequal Appl</addtitle><description>In this paper, we establish Taylor theory based on Hahn’s difference operator D q , ω which is defined by D q , ω f ( t ) = f ( q t + ω ) − f ( t ) t ( q − 1 ) + ω , t ≠ ω 1 − q , where q ∈ ( 0 , 1 ) and ω is a positive number.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Finite differences</subject><subject>Hahn difference operator D q , ω $D_{q,\omega}</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Taylor series</subject><issn>1029-242X</issn><issn>1025-5834</issn><issn>1029-242X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz6vJZJuPoxS1hYKXCt5CNjtpt9SmJltk_71pV9STh2GG4X3fGR5Cbhi9Y0yJ-8S4ELSkcCiuoexPyIhR0CVU8Hb6Zz4nFymtKQXGVTUiYmH7TYhFt8IQ-8KmFFxrO2yKz7ZbFVO72hZN6z1G3Doswg6j7UK8ImfebhJef_dL8vr0uJhMy_nL82zyMC9dBborHbPAnFdKIh3X1IGXnAmragZaNBVHCUCdqLUGX3MUzklsGFW2rvlY1ppfktmQ2wS7NrvYvtvYm2Bbc1yEuDQ2dq3boPFghadOeo68YspbIVFyoMLRymIlctbtkLWL4WOPqTPrsI_b_L7JyFT2aKayCgaViyGliP7nKqPmwNoMrE1mbY6sTZ9NfDClLN4uMf5G_-P6AvasgXY</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Oraby, Karima</creator><creator>Hamza, Alaa</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20200504</creationdate><title>Taylor theory associated with Hahn difference operator</title><author>Oraby, Karima ; Hamza, Alaa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c1a21cf887e05b0c2f7316a8b1296d43e7220c6b992fb3e6cc7ed108abb357b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Finite differences</topic><topic>Hahn difference operator D q , ω $D_{q,\omega}</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oraby, Karima</creatorcontrib><creatorcontrib>Hamza, Alaa</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of inequalities and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oraby, Karima</au><au>Hamza, Alaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taylor theory associated with Hahn difference operator</atitle><jtitle>Journal of inequalities and applications</jtitle><stitle>J Inequal Appl</stitle><date>2020-05-04</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>124</artnum><issn>1029-242X</issn><issn>1025-5834</issn><eissn>1029-242X</eissn><abstract>In this paper, we establish Taylor theory based on Hahn’s difference operator D q , ω which is defined by D q , ω f ( t ) = f ( q t + ω ) − f ( t ) t ( q − 1 ) + ω , t ≠ ω 1 − q , where q ∈ ( 0 , 1 ) and ω is a positive number.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13660-020-02392-y</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-242X
ispartof Journal of inequalities and applications, 2020-05, Vol.2020 (1), p.1-19, Article 124
issn 1029-242X
1025-5834
1029-242X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f2a6f0c7f3e3418fa67e73206c04ae46
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Analysis
Applications of Mathematics
Finite differences
Hahn difference operator D q , ω $D_{q,\omega}
Mathematics
Mathematics and Statistics
Operators (mathematics)
Taylor series
title Taylor theory associated with Hahn difference operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taylor%20theory%20associated%20with%20Hahn%20difference%20operator&rft.jtitle=Journal%20of%20inequalities%20and%20applications&rft.au=Oraby,%20Karima&rft.date=2020-05-04&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=124&rft.issn=1029-242X&rft.eissn=1029-242X&rft_id=info:doi/10.1186/s13660-020-02392-y&rft_dat=%3Cproquest_doaj_%3E2398418918%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-c1a21cf887e05b0c2f7316a8b1296d43e7220c6b992fb3e6cc7ed108abb357b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2398418918&rft_id=info:pmid/&rfr_iscdi=true