Loading…

Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. The...

Full description

Saved in:
Bibliographic Details
Published in:Redox biology 2015-04, Vol.4 (C), p.363-374
Main Authors: Berggren, Kiersten L, Chen, Jianfang, Fox, Julia, Miller, Jonathan, Dodds, Lindsay, Dugas, Bryan, Vargas, Liset, Lothian, Amber, McAllum, Erin, Volitakis, Irene, Roberts, Blaine, Bush, Ashley I, Fox, Jonathan H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-cbdbb4df6b8945c281d8684e22ad30e1cfc556e7ca9c811b79c11f68a43ff1e83
cites cdi_FETCH-LOGICAL-c471t-cbdbb4df6b8945c281d8684e22ad30e1cfc556e7ca9c811b79c11f68a43ff1e83
container_end_page 374
container_issue C
container_start_page 363
container_title Redox biology
container_volume 4
creator Berggren, Kiersten L
Chen, Jianfang
Fox, Julia
Miller, Jonathan
Dodds, Lindsay
Dugas, Bryan
Vargas, Liset
Lothian, Amber
McAllum, Erin
Volitakis, Irene
Roberts, Blaine
Bush, Ashley I
Fox, Jonathan H
description Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. Therefore, environmental factors that exacerbate oxidative stress and iron dysregulation may potentiate HD. Iron supplementation in the human population is common during infant and adult-life stages. In this study, iron supplementation in neonatal HD mice resulted in deterioration of spontaneous motor running activity, elevated levels of brain lactate and oxidized glutathione consistent with increased energetic dysfunction and oxidative stress, and increased striatal and motor cortical neuronal atrophy, collectively demonstrating potentiation of the disease phenotype. Oxidative stress, energetic, and anatomic markers of degeneration were not affected in wild-type littermate iron-supplemented mice. Further, there was no effect of elevated iron intake on disease outcomes in adult HD mice. We have demonstrated an interaction between the mutant huntingtin gene and iron supplementation in neonatal HD mice. Findings indicate that elevated neonatal iron intake potentiates mouse HD and promotes oxidative stress and energetic dysfunction in brain. Neonatal-infant dietary iron intake level may be an environmental modifier of human HD.
doi_str_mv 10.1016/j.redox.2015.02.002
format article
fullrecord <record><control><sourceid>pubmed_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f2b41163a55c427a92abe3a853552d4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f2b41163a55c427a92abe3a853552d4f</doaj_id><sourcerecordid>25703232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-cbdbb4df6b8945c281d8684e22ad30e1cfc556e7ca9c811b79c11f68a43ff1e83</originalsourceid><addsrcrecordid>eNpVkd9qHCEUxofQkoQ0T1Ao3vWmO_HvjHtTKCFtAqGF0l6Lo8eJy6wO6oTkSfK6cXfbkHihx-P5vqP-muYjwS3BpLvYtAlsfGgpJqLFtMWYHjWnlBK2ooz0717FJ815zhtch5ScEnzcnFDRY0YZPW2efkIMuugJ-RQDyss8T7CFUHTxdT_HUmOvC2QUH7yt2XtAuSTI-QuCAGmE4g2yj9ktwew1OlgUYEnRwrirODj5gModoN_dBUXbuGSos4UJRYeul9oijCWGzxlZn0Fn-NC8d3rKcP5vPWv-fr_6c3m9uv314-by2-3K8J6UlRnsMHDrukGuuTBUEis7yYFSbRkGYpwRooPe6LWRhAz92hDiOqk5c46AZGfNzcHXRr1Rc_JbnR5V1F7tEzGNSqf6wgmUowMnpGNaCMNpr9dUD8C0FEwIarmrXl8PXvMybMGa-nNJT29M354Ef6fGeK8445XM7jLsYGBSzDmBe9ESrHbY1UbtsasddoWpqtir6tPrti-a_5DZM0CJsAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease</title><source>PubMed Central(OpenAccess)</source><source>ScienceDirect Journals</source><creator>Berggren, Kiersten L ; Chen, Jianfang ; Fox, Julia ; Miller, Jonathan ; Dodds, Lindsay ; Dugas, Bryan ; Vargas, Liset ; Lothian, Amber ; McAllum, Erin ; Volitakis, Irene ; Roberts, Blaine ; Bush, Ashley I ; Fox, Jonathan H</creator><creatorcontrib>Berggren, Kiersten L ; Chen, Jianfang ; Fox, Julia ; Miller, Jonathan ; Dodds, Lindsay ; Dugas, Bryan ; Vargas, Liset ; Lothian, Amber ; McAllum, Erin ; Volitakis, Irene ; Roberts, Blaine ; Bush, Ashley I ; Fox, Jonathan H</creatorcontrib><description>Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. Therefore, environmental factors that exacerbate oxidative stress and iron dysregulation may potentiate HD. Iron supplementation in the human population is common during infant and adult-life stages. In this study, iron supplementation in neonatal HD mice resulted in deterioration of spontaneous motor running activity, elevated levels of brain lactate and oxidized glutathione consistent with increased energetic dysfunction and oxidative stress, and increased striatal and motor cortical neuronal atrophy, collectively demonstrating potentiation of the disease phenotype. Oxidative stress, energetic, and anatomic markers of degeneration were not affected in wild-type littermate iron-supplemented mice. Further, there was no effect of elevated iron intake on disease outcomes in adult HD mice. We have demonstrated an interaction between the mutant huntingtin gene and iron supplementation in neonatal HD mice. Findings indicate that elevated neonatal iron intake potentiates mouse HD and promotes oxidative stress and energetic dysfunction in brain. Neonatal-infant dietary iron intake level may be an environmental modifier of human HD.</description><identifier>ISSN: 2213-2317</identifier><identifier>EISSN: 2213-2317</identifier><identifier>DOI: 10.1016/j.redox.2015.02.002</identifier><identifier>PMID: 25703232</identifier><language>eng</language><publisher>Netherlands: Elsevier</publisher><subject>Animals ; Animals, Newborn ; Behavior, Animal - drug effects ; Corpus Striatum - drug effects ; Corpus Striatum - metabolism ; Corpus Striatum - pathology ; Dietary Supplements - adverse effects ; Disease Models, Animal ; Energy Metabolism - drug effects ; Female ; Gene environment interaction ; Gene Expression ; Glutathione Disulfide - agonists ; Glutathione Disulfide - metabolism ; Humans ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington Disease - pathology ; Huntington’s ; Iron ; Iron Compounds - adverse effects ; Mice ; Mice, Transgenic ; Motor Cortex - drug effects ; Motor Cortex - metabolism ; Motor Cortex - pathology ; Neurodegeneration ; Neurons - metabolism ; Neurons - pathology ; Oxidative stress ; Oxidative Stress - drug effects ; Phenotype ; Research Paper ; Rotarod Performance Test ; Serotonin Plasma Membrane Transport Proteins - genetics ; Serotonin Plasma Membrane Transport Proteins - metabolism ; Stereology</subject><ispartof>Redox biology, 2015-04, Vol.4 (C), p.363-374</ispartof><rights>Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-cbdbb4df6b8945c281d8684e22ad30e1cfc556e7ca9c811b79c11f68a43ff1e83</citedby><cites>FETCH-LOGICAL-c471t-cbdbb4df6b8945c281d8684e22ad30e1cfc556e7ca9c811b79c11f68a43ff1e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348428/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25703232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berggren, Kiersten L</creatorcontrib><creatorcontrib>Chen, Jianfang</creatorcontrib><creatorcontrib>Fox, Julia</creatorcontrib><creatorcontrib>Miller, Jonathan</creatorcontrib><creatorcontrib>Dodds, Lindsay</creatorcontrib><creatorcontrib>Dugas, Bryan</creatorcontrib><creatorcontrib>Vargas, Liset</creatorcontrib><creatorcontrib>Lothian, Amber</creatorcontrib><creatorcontrib>McAllum, Erin</creatorcontrib><creatorcontrib>Volitakis, Irene</creatorcontrib><creatorcontrib>Roberts, Blaine</creatorcontrib><creatorcontrib>Bush, Ashley I</creatorcontrib><creatorcontrib>Fox, Jonathan H</creatorcontrib><title>Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease</title><title>Redox biology</title><addtitle>Redox Biol</addtitle><description>Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. Therefore, environmental factors that exacerbate oxidative stress and iron dysregulation may potentiate HD. Iron supplementation in the human population is common during infant and adult-life stages. In this study, iron supplementation in neonatal HD mice resulted in deterioration of spontaneous motor running activity, elevated levels of brain lactate and oxidized glutathione consistent with increased energetic dysfunction and oxidative stress, and increased striatal and motor cortical neuronal atrophy, collectively demonstrating potentiation of the disease phenotype. Oxidative stress, energetic, and anatomic markers of degeneration were not affected in wild-type littermate iron-supplemented mice. Further, there was no effect of elevated iron intake on disease outcomes in adult HD mice. We have demonstrated an interaction between the mutant huntingtin gene and iron supplementation in neonatal HD mice. Findings indicate that elevated neonatal iron intake potentiates mouse HD and promotes oxidative stress and energetic dysfunction in brain. Neonatal-infant dietary iron intake level may be an environmental modifier of human HD.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Behavior, Animal - drug effects</subject><subject>Corpus Striatum - drug effects</subject><subject>Corpus Striatum - metabolism</subject><subject>Corpus Striatum - pathology</subject><subject>Dietary Supplements - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Energy Metabolism - drug effects</subject><subject>Female</subject><subject>Gene environment interaction</subject><subject>Gene Expression</subject><subject>Glutathione Disulfide - agonists</subject><subject>Glutathione Disulfide - metabolism</subject><subject>Humans</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington Disease - pathology</subject><subject>Huntington’s</subject><subject>Iron</subject><subject>Iron Compounds - adverse effects</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor Cortex - drug effects</subject><subject>Motor Cortex - metabolism</subject><subject>Motor Cortex - pathology</subject><subject>Neurodegeneration</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Phenotype</subject><subject>Research Paper</subject><subject>Rotarod Performance Test</subject><subject>Serotonin Plasma Membrane Transport Proteins - genetics</subject><subject>Serotonin Plasma Membrane Transport Proteins - metabolism</subject><subject>Stereology</subject><issn>2213-2317</issn><issn>2213-2317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkd9qHCEUxofQkoQ0T1Ao3vWmO_HvjHtTKCFtAqGF0l6Lo8eJy6wO6oTkSfK6cXfbkHihx-P5vqP-muYjwS3BpLvYtAlsfGgpJqLFtMWYHjWnlBK2ooz0717FJ815zhtch5ScEnzcnFDRY0YZPW2efkIMuugJ-RQDyss8T7CFUHTxdT_HUmOvC2QUH7yt2XtAuSTI-QuCAGmE4g2yj9ktwew1OlgUYEnRwrirODj5gModoN_dBUXbuGSos4UJRYeul9oijCWGzxlZn0Fn-NC8d3rKcP5vPWv-fr_6c3m9uv314-by2-3K8J6UlRnsMHDrukGuuTBUEis7yYFSbRkGYpwRooPe6LWRhAz92hDiOqk5c46AZGfNzcHXRr1Rc_JbnR5V1F7tEzGNSqf6wgmUowMnpGNaCMNpr9dUD8C0FEwIarmrXl8PXvMybMGa-nNJT29M354Ef6fGeK8445XM7jLsYGBSzDmBe9ESrHbY1UbtsasddoWpqtir6tPrti-a_5DZM0CJsAg</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Berggren, Kiersten L</creator><creator>Chen, Jianfang</creator><creator>Fox, Julia</creator><creator>Miller, Jonathan</creator><creator>Dodds, Lindsay</creator><creator>Dugas, Bryan</creator><creator>Vargas, Liset</creator><creator>Lothian, Amber</creator><creator>McAllum, Erin</creator><creator>Volitakis, Irene</creator><creator>Roberts, Blaine</creator><creator>Bush, Ashley I</creator><creator>Fox, Jonathan H</creator><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150401</creationdate><title>Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease</title><author>Berggren, Kiersten L ; Chen, Jianfang ; Fox, Julia ; Miller, Jonathan ; Dodds, Lindsay ; Dugas, Bryan ; Vargas, Liset ; Lothian, Amber ; McAllum, Erin ; Volitakis, Irene ; Roberts, Blaine ; Bush, Ashley I ; Fox, Jonathan H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-cbdbb4df6b8945c281d8684e22ad30e1cfc556e7ca9c811b79c11f68a43ff1e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Behavior, Animal - drug effects</topic><topic>Corpus Striatum - drug effects</topic><topic>Corpus Striatum - metabolism</topic><topic>Corpus Striatum - pathology</topic><topic>Dietary Supplements - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Energy Metabolism - drug effects</topic><topic>Female</topic><topic>Gene environment interaction</topic><topic>Gene Expression</topic><topic>Glutathione Disulfide - agonists</topic><topic>Glutathione Disulfide - metabolism</topic><topic>Humans</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington Disease - pathology</topic><topic>Huntington’s</topic><topic>Iron</topic><topic>Iron Compounds - adverse effects</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor Cortex - drug effects</topic><topic>Motor Cortex - metabolism</topic><topic>Motor Cortex - pathology</topic><topic>Neurodegeneration</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Phenotype</topic><topic>Research Paper</topic><topic>Rotarod Performance Test</topic><topic>Serotonin Plasma Membrane Transport Proteins - genetics</topic><topic>Serotonin Plasma Membrane Transport Proteins - metabolism</topic><topic>Stereology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berggren, Kiersten L</creatorcontrib><creatorcontrib>Chen, Jianfang</creatorcontrib><creatorcontrib>Fox, Julia</creatorcontrib><creatorcontrib>Miller, Jonathan</creatorcontrib><creatorcontrib>Dodds, Lindsay</creatorcontrib><creatorcontrib>Dugas, Bryan</creatorcontrib><creatorcontrib>Vargas, Liset</creatorcontrib><creatorcontrib>Lothian, Amber</creatorcontrib><creatorcontrib>McAllum, Erin</creatorcontrib><creatorcontrib>Volitakis, Irene</creatorcontrib><creatorcontrib>Roberts, Blaine</creatorcontrib><creatorcontrib>Bush, Ashley I</creatorcontrib><creatorcontrib>Fox, Jonathan H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Redox biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berggren, Kiersten L</au><au>Chen, Jianfang</au><au>Fox, Julia</au><au>Miller, Jonathan</au><au>Dodds, Lindsay</au><au>Dugas, Bryan</au><au>Vargas, Liset</au><au>Lothian, Amber</au><au>McAllum, Erin</au><au>Volitakis, Irene</au><au>Roberts, Blaine</au><au>Bush, Ashley I</au><au>Fox, Jonathan H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease</atitle><jtitle>Redox biology</jtitle><addtitle>Redox Biol</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>4</volume><issue>C</issue><spage>363</spage><epage>374</epage><pages>363-374</pages><issn>2213-2317</issn><eissn>2213-2317</eissn><abstract>Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in huntingtin (htt) protein. Dysregulation of brain iron homeostasis, oxidative stress and neurodegeneration are consistent features of the HD phenotype. Therefore, environmental factors that exacerbate oxidative stress and iron dysregulation may potentiate HD. Iron supplementation in the human population is common during infant and adult-life stages. In this study, iron supplementation in neonatal HD mice resulted in deterioration of spontaneous motor running activity, elevated levels of brain lactate and oxidized glutathione consistent with increased energetic dysfunction and oxidative stress, and increased striatal and motor cortical neuronal atrophy, collectively demonstrating potentiation of the disease phenotype. Oxidative stress, energetic, and anatomic markers of degeneration were not affected in wild-type littermate iron-supplemented mice. Further, there was no effect of elevated iron intake on disease outcomes in adult HD mice. We have demonstrated an interaction between the mutant huntingtin gene and iron supplementation in neonatal HD mice. Findings indicate that elevated neonatal iron intake potentiates mouse HD and promotes oxidative stress and energetic dysfunction in brain. Neonatal-infant dietary iron intake level may be an environmental modifier of human HD.</abstract><cop>Netherlands</cop><pub>Elsevier</pub><pmid>25703232</pmid><doi>10.1016/j.redox.2015.02.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-2317
ispartof Redox biology, 2015-04, Vol.4 (C), p.363-374
issn 2213-2317
2213-2317
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f2b41163a55c427a92abe3a853552d4f
source PubMed Central(OpenAccess); ScienceDirect Journals
subjects Animals
Animals, Newborn
Behavior, Animal - drug effects
Corpus Striatum - drug effects
Corpus Striatum - metabolism
Corpus Striatum - pathology
Dietary Supplements - adverse effects
Disease Models, Animal
Energy Metabolism - drug effects
Female
Gene environment interaction
Gene Expression
Glutathione Disulfide - agonists
Glutathione Disulfide - metabolism
Humans
Huntington Disease - genetics
Huntington Disease - metabolism
Huntington Disease - pathology
Huntington’s
Iron
Iron Compounds - adverse effects
Mice
Mice, Transgenic
Motor Cortex - drug effects
Motor Cortex - metabolism
Motor Cortex - pathology
Neurodegeneration
Neurons - metabolism
Neurons - pathology
Oxidative stress
Oxidative Stress - drug effects
Phenotype
Research Paper
Rotarod Performance Test
Serotonin Plasma Membrane Transport Proteins - genetics
Serotonin Plasma Membrane Transport Proteins - metabolism
Stereology
title Neonatal iron supplementation potentiates oxidative stress, energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington's disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neonatal%20iron%20supplementation%20potentiates%20oxidative%20stress,%20energetic%20dysfunction%20and%20neurodegeneration%20in%20the%20R6/2%20mouse%20model%20of%20Huntington's%20disease&rft.jtitle=Redox%20biology&rft.au=Berggren,%20Kiersten%20L&rft.date=2015-04-01&rft.volume=4&rft.issue=C&rft.spage=363&rft.epage=374&rft.pages=363-374&rft.issn=2213-2317&rft.eissn=2213-2317&rft_id=info:doi/10.1016/j.redox.2015.02.002&rft_dat=%3Cpubmed_doaj_%3E25703232%3C/pubmed_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-cbdbb4df6b8945c281d8684e22ad30e1cfc556e7ca9c811b79c11f68a43ff1e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/25703232&rfr_iscdi=true