Loading…

Population genetic structure and phylogenetic analysis of Anopheles hyrcanus (Diptera: Culicidae) inferred from DNA sequences of nuclear ITS2 and the mitochondrial COI gene in the northern part of Iran

The Anopheles hyrcanus group is distributed throughout the Oriental and Palaearctic regions and can transmit diseases such as malaria, Japanese encephalitis virus, and filariasis. This investigation marks the inaugural comprehensive study to undertake a phylogenetic analysis of the constituents of t...

Full description

Saved in:
Bibliographic Details
Published in:BMC infectious diseases 2024-07, Vol.24 (1), p.724-11, Article 724
Main Authors: Askari, Fatemeh, Paksa, Azim, Shahabi, Saeed, Saeedi, Shahin, Sofizadeh, Aioub, Vahedi, Mozaffar, Soltani, Aboozar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Anopheles hyrcanus group is distributed throughout the Oriental and Palaearctic regions and can transmit diseases such as malaria, Japanese encephalitis virus, and filariasis. This investigation marks the inaugural comprehensive study to undertake a phylogenetic analysis of the constituents of this malaria vector group in the northeastern region of Iran, juxtaposed with documented occurrences from different areas within Iran and worldwide. Mosquitoes were collected using various methods from nine different locations in Golestan province from April to December 2023. The collected mosquitoes were identified morphologically using valid taxonomic keys. DNA was isolated using the Sambio™ Kit. COI and ITS2 primers were designed using Oligo7 and GeneRunner. PCR and purification were performed with the Qiagen kit. Subsequently, sequencing was carried out at the Mehr Mam GENE Center using an Applied Biosystems 3730XL sequencer. The nucleotide sequences were then analyzed and aligned with GenBank data using BioEdit. Kimura 2-parameter was Utilized for base substitutions. DNA models were selected based on AIC and BIC criteria. Bayesian and Maximum Likelihood trees were constructed, along with a haplotype network. Molecular diversity statistics computed using DnaSP software. In this study, a total of 819 adult mosquitoes were collected. An. hyrcanus was the second most abundant species, predominantly found in Kalaleh and Turkman counties. The sequenced and edited COI and ITS2 sequences were deposited in GenBank under specific accession numbers. Phylogenetic analyses using ML, BI, and NJ methods confirmed a monophyletic lineage for An. hyrcanus with strong support. Molecular analysis of Iranian An. hyrcanus found 11 diverse haplotypes, with the COI gene displaying low diversity. The ITS2 gene revealed two clades - one associating with Iran, Europe, and Asia; the other originating from southwestern Iran. The haplotype network showed two main groups - one from southwest Iran and the other from north Iran. Iran exhibited six distinct haplotypes, while Turkey showcased the highest diversity. An. hyrcanus in southwestern Iran exhibits a distinct haplogroup, suggesting possible subspecies differentiation. Additional studies are required to validate this phenomenon.
ISSN:1471-2334
1471-2334
DOI:10.1186/s12879-024-09626-0