Loading…

Dynamic Changes and Driving Forces of Alpine Wetlands on the Qinghai–Tibetan Plateau Based on Long-Term Time Series Satellite Data: A Case Study in the Gansu Maqu Wetlands

The Qinghai–Tibet Plateau (QTP), also known as the Third Pole of the Earth, is sensitive to climate change, and it has become a hotspot area for research. As a typical natural ecosystem on the QTP, alpine wetlands are particularly sensitive to climate change. The identification of different types of...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-09, Vol.14 (17), p.4147
Main Authors: Zhang, Bo, Niu, Zhenguo, Zhang, Dongqi, Huo, Xuanlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Qinghai–Tibet Plateau (QTP), also known as the Third Pole of the Earth, is sensitive to climate change, and it has become a hotspot area for research. As a typical natural ecosystem on the QTP, alpine wetlands are particularly sensitive to climate change. The identification of different types of alpine wetland and analysis of changes in their distributions and areas are the most direct indicators for characterizing the impact of climate change on wetlands. To understand the dynamic change process of the alpine wetlands in the QTP and their responses to climate change, the Maqu wetlands, located at the source of the Three Rivers in the eastern part of the QTP, was taken as an example; the Google Earth Engine (GEE) remote sensing cloud platform and long-term dense Landsat time series data from 1990 to 2020 were used to map the annual wetland classification and to analyze the evolution characteristics of the wetlands and their driving forces. The results revealed that (1) based on dense Landsat time series data, different alpine wetland types can be effectively distinguished, including swamp, swamp meadow, and wet meadow. (2) From 1990 to 2020, the area of the Maqu wetlands exhibited an overall fluctuating decrease, with the total area decreasing by about 23.35%, among which the swamp area decreased the most (by 27.15%). The overall type of change was from wet to dry. All of the types of wetlands were concentrated between 3400 and 3600 m above sea level, and the reduction in the wetland area was concentrated on slopes < 3°, with the greatest loss of wetland area occurring on shady slopes. (3) The driving forces of the changes in the wetlands were predominantly temperature and precipitation, and the greatest correlation was between the total wetland area and the growing season temperature. The results of this study provide valuable information for the conservation of alpine wetlands.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14174147