Loading…

PID Adaptive Feedback Motor System Based on Neural Network

This paper presents a neural network-based feedback control method for enhancing the control precision and tracking speed of a permanent magnet brushless motor under command control. The proposed method involves real-time adjustment of the PID controller parameters using electromechanical output sig...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024-01, Vol.12, p.1-1
Main Authors: Lu, Yufang, Huang, Jiehui, Jiang, Zhijun, Tang, Tao, Tang, Haihua, Shi, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-8545b814bcfbfa4f0fd517cd2d45d49e49f73723f140e1efb31441f0942e65583
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Lu, Yufang
Huang, Jiehui
Jiang, Zhijun
Tang, Tao
Tang, Haihua
Shi, Lei
description This paper presents a neural network-based feedback control method for enhancing the control precision and tracking speed of a permanent magnet brushless motor under command control. The proposed method involves real-time adjustment of the PID controller parameters using electromechanical output signals, enabling adaptive feedback control based on motor output. Experimental results demonstrate that this approach enhances real-time performance and dynamic load response capability, resulting in a current waveform with excellent tracking and low distortion. Overall, this method effectively improves and enhances control effectiveness. Furthermore, the developed control method is successfully applied to the development of tangible products.
doi_str_mv 10.1109/ACCESS.2024.3393029
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f2cc0b5eaea94af58c2d6b666f8f3406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10507815</ieee_id><doaj_id>oai_doaj_org_article_f2cc0b5eaea94af58c2d6b666f8f3406</doaj_id><sourcerecordid>3050304382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8545b814bcfbfa4f0fd517cd2d45d49e49f73723f140e1efb31441f0942e65583</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVNAvgEMkzil-Jja3ElqoVB5S4Ww59hqlLxcnBfXvSUmFupdZjWZmV4PQFcEDQrC6HRbFaDYbUEz5gDHFMFUnqEdJplImWHZ6tJ-jfl3PcTuypUTeQ3dvk4dk6Mymqb4hGQO40thF8hyaEJPZrm5gldybGlwS1skLbKNZttD8hLi4RGfeLGvoH_ACfYxH78VTOn19nBTDaWqZUE0qBRelJLy0vvSGe-ydILl11HHhuAKufM5yyjzhGAj4khHOiceKU8iEkOwCTbpcF8xcb2K1MnGng6n0HxHipzaxqewStKfW4lKAAaO48UJa6rIyyzIvPeM4a7NuuqxNDF9bqBs9D9u4bt_XDAvMMGeStirWqWwMdR3B_18lWO87113net-5PnTeuq47VwUARw6Bc0kE-wWp33sn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050304382</pqid></control><display><type>article</type><title>PID Adaptive Feedback Motor System Based on Neural Network</title><source>IEEE Open Access Journals</source><creator>Lu, Yufang ; Huang, Jiehui ; Jiang, Zhijun ; Tang, Tao ; Tang, Haihua ; Shi, Lei</creator><creatorcontrib>Lu, Yufang ; Huang, Jiehui ; Jiang, Zhijun ; Tang, Tao ; Tang, Haihua ; Shi, Lei</creatorcontrib><description>This paper presents a neural network-based feedback control method for enhancing the control precision and tracking speed of a permanent magnet brushless motor under command control. The proposed method involves real-time adjustment of the PID controller parameters using electromechanical output signals, enabling adaptive feedback control based on motor output. Experimental results demonstrate that this approach enhances real-time performance and dynamic load response capability, resulting in a current waveform with excellent tracking and low distortion. Overall, this method effectively improves and enhances control effectiveness. Furthermore, the developed control method is successfully applied to the development of tangible products.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3393029</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; BP neural network ; Brushless motors ; Control methods ; Control systems ; Dynamic loads ; Feedback ; Feedback control ; motor system ; Motors ; Neural networks ; PD control ; Permanent magnets ; PI control ; PID control ; PMSM ; Proportional integral derivative ; Real time ; Tracking control ; Training ; Waveforms</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8545b814bcfbfa4f0fd517cd2d45d49e49f73723f140e1efb31441f0942e65583</cites><orcidid>0000-0002-9053-3104 ; 0009-0003-3518-089X ; 0000-0003-1044-0619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10507815$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lu, Yufang</creatorcontrib><creatorcontrib>Huang, Jiehui</creatorcontrib><creatorcontrib>Jiang, Zhijun</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Tang, Haihua</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><title>PID Adaptive Feedback Motor System Based on Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a neural network-based feedback control method for enhancing the control precision and tracking speed of a permanent magnet brushless motor under command control. The proposed method involves real-time adjustment of the PID controller parameters using electromechanical output signals, enabling adaptive feedback control based on motor output. Experimental results demonstrate that this approach enhances real-time performance and dynamic load response capability, resulting in a current waveform with excellent tracking and low distortion. Overall, this method effectively improves and enhances control effectiveness. Furthermore, the developed control method is successfully applied to the development of tangible products.</description><subject>Adaptive control</subject><subject>BP neural network</subject><subject>Brushless motors</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Dynamic loads</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>motor system</subject><subject>Motors</subject><subject>Neural networks</subject><subject>PD control</subject><subject>Permanent magnets</subject><subject>PI control</subject><subject>PID control</subject><subject>PMSM</subject><subject>Proportional integral derivative</subject><subject>Real time</subject><subject>Tracking control</subject><subject>Training</subject><subject>Waveforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVNAvgEMkzil-Jja3ElqoVB5S4Ww59hqlLxcnBfXvSUmFupdZjWZmV4PQFcEDQrC6HRbFaDYbUEz5gDHFMFUnqEdJplImWHZ6tJ-jfl3PcTuypUTeQ3dvk4dk6Mymqb4hGQO40thF8hyaEJPZrm5gldybGlwS1skLbKNZttD8hLi4RGfeLGvoH_ACfYxH78VTOn19nBTDaWqZUE0qBRelJLy0vvSGe-ydILl11HHhuAKufM5yyjzhGAj4khHOiceKU8iEkOwCTbpcF8xcb2K1MnGng6n0HxHipzaxqewStKfW4lKAAaO48UJa6rIyyzIvPeM4a7NuuqxNDF9bqBs9D9u4bt_XDAvMMGeStirWqWwMdR3B_18lWO87113net-5PnTeuq47VwUARw6Bc0kE-wWp33sn</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lu, Yufang</creator><creator>Huang, Jiehui</creator><creator>Jiang, Zhijun</creator><creator>Tang, Tao</creator><creator>Tang, Haihua</creator><creator>Shi, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9053-3104</orcidid><orcidid>https://orcid.org/0009-0003-3518-089X</orcidid><orcidid>https://orcid.org/0000-0003-1044-0619</orcidid></search><sort><creationdate>20240101</creationdate><title>PID Adaptive Feedback Motor System Based on Neural Network</title><author>Lu, Yufang ; Huang, Jiehui ; Jiang, Zhijun ; Tang, Tao ; Tang, Haihua ; Shi, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8545b814bcfbfa4f0fd517cd2d45d49e49f73723f140e1efb31441f0942e65583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>BP neural network</topic><topic>Brushless motors</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Dynamic loads</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>motor system</topic><topic>Motors</topic><topic>Neural networks</topic><topic>PD control</topic><topic>Permanent magnets</topic><topic>PI control</topic><topic>PID control</topic><topic>PMSM</topic><topic>Proportional integral derivative</topic><topic>Real time</topic><topic>Tracking control</topic><topic>Training</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yufang</creatorcontrib><creatorcontrib>Huang, Jiehui</creatorcontrib><creatorcontrib>Jiang, Zhijun</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Tang, Haihua</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yufang</au><au>Huang, Jiehui</au><au>Jiang, Zhijun</au><au>Tang, Tao</au><au>Tang, Haihua</au><au>Shi, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PID Adaptive Feedback Motor System Based on Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a neural network-based feedback control method for enhancing the control precision and tracking speed of a permanent magnet brushless motor under command control. The proposed method involves real-time adjustment of the PID controller parameters using electromechanical output signals, enabling adaptive feedback control based on motor output. Experimental results demonstrate that this approach enhances real-time performance and dynamic load response capability, resulting in a current waveform with excellent tracking and low distortion. Overall, this method effectively improves and enhances control effectiveness. Furthermore, the developed control method is successfully applied to the development of tangible products.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3393029</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9053-3104</orcidid><orcidid>https://orcid.org/0009-0003-3518-089X</orcidid><orcidid>https://orcid.org/0000-0003-1044-0619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f2cc0b5eaea94af58c2d6b666f8f3406
source IEEE Open Access Journals
subjects Adaptive control
BP neural network
Brushless motors
Control methods
Control systems
Dynamic loads
Feedback
Feedback control
motor system
Motors
Neural networks
PD control
Permanent magnets
PI control
PID control
PMSM
Proportional integral derivative
Real time
Tracking control
Training
Waveforms
title PID Adaptive Feedback Motor System Based on Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PID%20Adaptive%20Feedback%20Motor%20System%20Based%20on%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Lu,%20Yufang&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3393029&rft_dat=%3Cproquest_doaj_%3E3050304382%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8545b814bcfbfa4f0fd517cd2d45d49e49f73723f140e1efb31441f0942e65583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3050304382&rft_id=info:pmid/&rft_ieee_id=10507815&rfr_iscdi=true