Loading…
γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis
γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using met...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (12), p.2017 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3 |
container_end_page | |
container_issue | 12 |
container_start_page | 2017 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 12 |
creator | Córdova-Pérez, Gerardo E. Cortez-Elizalde, Jorge Silahua-Pavón, Adib Abiu Cervantes-Uribe, Adrián Arévalo-Pérez, Juan Carlos Cordero-Garcia, Adrián de los Monteros, Alejandra E. Espinosa Espinosa-González, Claudia G. Godavarthi, Srinivas Ortiz-Chi, Filiberto Guerra-Que, Zenaida Torres-Torres, José Gilberto |
description | γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect. |
doi_str_mv | 10.3390/nano12122017 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f2ea830f14e94a339bdabf88811767a4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f2ea830f14e94a339bdabf88811767a4</doaj_id><sourcerecordid>2679803952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</originalsourceid><addsrcrecordid>eNpdkt1qFDEUgAdRbKm98wEC3njhav5mknghlKLuwlKFtt6GTHJmmmU2GZOZwj6Gz-J7-Exmu4u05iIJOd_5ODmcqnpN8HvGFP4QTIiEEkoxEc-qU4qFWnClyPNH95PqPOcNLksRJmv2sjphteB12U6rX39-L36YAVIcjJ1iAPQ9RTfbyceAuhS3aA338-CDt-jCeoeWO5diD8E8ELfZhx5deXQ9j2NMEzh0VUoaTZq8HSB_RKvQDTMECyh26GYOfZ4goHU0bp9pgkPjch-63oXpDrLPr6oXnRkynB_Ps-r2y-eby-Vi_e3r6vJivbC8rqeF7DjrakEF5koKpbBqmJFcYd5wgTvCnTXctk5Qa1spbWuANLbmmBPAXFh2Vq0OXhfNRo_Jb03a6Wi8fniIqdfHX-iOgpFsLwXFTWl860zbSSkJEY0wvLg-HVzj3G7BWQhTMsMT6dNI8He6j_daUVo0sgjeHgUp_pwhT3rrs4VhMAHinDVtJMGMS9IU9M1_6CbOKZRWFUooiZmqaaHeHSibYs4Jun_FEKz3o6Mfjw77C8Rqt8o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679803952</pqid></control><display><type>article</type><title>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Córdova-Pérez, Gerardo E. ; Cortez-Elizalde, Jorge ; Silahua-Pavón, Adib Abiu ; Cervantes-Uribe, Adrián ; Arévalo-Pérez, Juan Carlos ; Cordero-Garcia, Adrián ; de los Monteros, Alejandra E. Espinosa ; Espinosa-González, Claudia G. ; Godavarthi, Srinivas ; Ortiz-Chi, Filiberto ; Guerra-Que, Zenaida ; Torres-Torres, José Gilberto</creator><creatorcontrib>Córdova-Pérez, Gerardo E. ; Cortez-Elizalde, Jorge ; Silahua-Pavón, Adib Abiu ; Cervantes-Uribe, Adrián ; Arévalo-Pérez, Juan Carlos ; Cordero-Garcia, Adrián ; de los Monteros, Alejandra E. Espinosa ; Espinosa-González, Claudia G. ; Godavarthi, Srinivas ; Ortiz-Chi, Filiberto ; Guerra-Que, Zenaida ; Torres-Torres, José Gilberto</creatorcontrib><description>γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12122017</identifier><identifier>PMID: 35745357</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acetic acid ; Acidity ; Acids ; Ammonium ; Ammonium hydroxide ; Biodiesel fuels ; Biofuels ; Carbon ; Catalysts ; Catalytic activity ; Cellulose ; Climate change ; Energy ; Esterification ; Ethanol ; Heavy metals ; Hydrogenation ; Levulinic acid ; Lewis acid ; Nanoparticles ; Ni/Al2O3-TiO2 nanocatalysts ; NMR ; Noble metals ; Nuclear magnetic resonance ; Particle size ; pH effects ; Sol-gel processes ; Solvents ; Synthesis ; Tungsten ; X ray photoelectron spectroscopy ; y-valerolactone</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-06, Vol.12 (12), p.2017</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</citedby><cites>FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</cites><orcidid>0000-0002-2859-7633 ; 0000-0002-5325-6216 ; 0000-0002-8734-5575 ; 0000-0003-3545-2683 ; 0000-0001-8389-7930 ; 0000-0003-1551-2570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679803952/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679803952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Córdova-Pérez, Gerardo E.</creatorcontrib><creatorcontrib>Cortez-Elizalde, Jorge</creatorcontrib><creatorcontrib>Silahua-Pavón, Adib Abiu</creatorcontrib><creatorcontrib>Cervantes-Uribe, Adrián</creatorcontrib><creatorcontrib>Arévalo-Pérez, Juan Carlos</creatorcontrib><creatorcontrib>Cordero-Garcia, Adrián</creatorcontrib><creatorcontrib>de los Monteros, Alejandra E. Espinosa</creatorcontrib><creatorcontrib>Espinosa-González, Claudia G.</creatorcontrib><creatorcontrib>Godavarthi, Srinivas</creatorcontrib><creatorcontrib>Ortiz-Chi, Filiberto</creatorcontrib><creatorcontrib>Guerra-Que, Zenaida</creatorcontrib><creatorcontrib>Torres-Torres, José Gilberto</creatorcontrib><title>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</title><title>Nanomaterials (Basel, Switzerland)</title><description>γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.</description><subject>Acetic acid</subject><subject>Acidity</subject><subject>Acids</subject><subject>Ammonium</subject><subject>Ammonium hydroxide</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cellulose</subject><subject>Climate change</subject><subject>Energy</subject><subject>Esterification</subject><subject>Ethanol</subject><subject>Heavy metals</subject><subject>Hydrogenation</subject><subject>Levulinic acid</subject><subject>Lewis acid</subject><subject>Nanoparticles</subject><subject>Ni/Al2O3-TiO2 nanocatalysts</subject><subject>NMR</subject><subject>Noble metals</subject><subject>Nuclear magnetic resonance</subject><subject>Particle size</subject><subject>pH effects</subject><subject>Sol-gel processes</subject><subject>Solvents</subject><subject>Synthesis</subject><subject>Tungsten</subject><subject>X ray photoelectron spectroscopy</subject><subject>y-valerolactone</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1qFDEUgAdRbKm98wEC3njhav5mknghlKLuwlKFtt6GTHJmmmU2GZOZwj6Gz-J7-Exmu4u05iIJOd_5ODmcqnpN8HvGFP4QTIiEEkoxEc-qU4qFWnClyPNH95PqPOcNLksRJmv2sjphteB12U6rX39-L36YAVIcjJ1iAPQ9RTfbyceAuhS3aA338-CDt-jCeoeWO5diD8E8ELfZhx5deXQ9j2NMEzh0VUoaTZq8HSB_RKvQDTMECyh26GYOfZ4goHU0bp9pgkPjch-63oXpDrLPr6oXnRkynB_Ps-r2y-eby-Vi_e3r6vJivbC8rqeF7DjrakEF5koKpbBqmJFcYd5wgTvCnTXctk5Qa1spbWuANLbmmBPAXFh2Vq0OXhfNRo_Jb03a6Wi8fniIqdfHX-iOgpFsLwXFTWl860zbSSkJEY0wvLg-HVzj3G7BWQhTMsMT6dNI8He6j_daUVo0sgjeHgUp_pwhT3rrs4VhMAHinDVtJMGMS9IU9M1_6CbOKZRWFUooiZmqaaHeHSibYs4Jun_FEKz3o6Mfjw77C8Rqt8o</recordid><startdate>20220611</startdate><enddate>20220611</enddate><creator>Córdova-Pérez, Gerardo E.</creator><creator>Cortez-Elizalde, Jorge</creator><creator>Silahua-Pavón, Adib Abiu</creator><creator>Cervantes-Uribe, Adrián</creator><creator>Arévalo-Pérez, Juan Carlos</creator><creator>Cordero-Garcia, Adrián</creator><creator>de los Monteros, Alejandra E. Espinosa</creator><creator>Espinosa-González, Claudia G.</creator><creator>Godavarthi, Srinivas</creator><creator>Ortiz-Chi, Filiberto</creator><creator>Guerra-Que, Zenaida</creator><creator>Torres-Torres, José Gilberto</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2859-7633</orcidid><orcidid>https://orcid.org/0000-0002-5325-6216</orcidid><orcidid>https://orcid.org/0000-0002-8734-5575</orcidid><orcidid>https://orcid.org/0000-0003-3545-2683</orcidid><orcidid>https://orcid.org/0000-0001-8389-7930</orcidid><orcidid>https://orcid.org/0000-0003-1551-2570</orcidid></search><sort><creationdate>20220611</creationdate><title>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</title><author>Córdova-Pérez, Gerardo E. ; Cortez-Elizalde, Jorge ; Silahua-Pavón, Adib Abiu ; Cervantes-Uribe, Adrián ; Arévalo-Pérez, Juan Carlos ; Cordero-Garcia, Adrián ; de los Monteros, Alejandra E. Espinosa ; Espinosa-González, Claudia G. ; Godavarthi, Srinivas ; Ortiz-Chi, Filiberto ; Guerra-Que, Zenaida ; Torres-Torres, José Gilberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Acidity</topic><topic>Acids</topic><topic>Ammonium</topic><topic>Ammonium hydroxide</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cellulose</topic><topic>Climate change</topic><topic>Energy</topic><topic>Esterification</topic><topic>Ethanol</topic><topic>Heavy metals</topic><topic>Hydrogenation</topic><topic>Levulinic acid</topic><topic>Lewis acid</topic><topic>Nanoparticles</topic><topic>Ni/Al2O3-TiO2 nanocatalysts</topic><topic>NMR</topic><topic>Noble metals</topic><topic>Nuclear magnetic resonance</topic><topic>Particle size</topic><topic>pH effects</topic><topic>Sol-gel processes</topic><topic>Solvents</topic><topic>Synthesis</topic><topic>Tungsten</topic><topic>X ray photoelectron spectroscopy</topic><topic>y-valerolactone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Córdova-Pérez, Gerardo E.</creatorcontrib><creatorcontrib>Cortez-Elizalde, Jorge</creatorcontrib><creatorcontrib>Silahua-Pavón, Adib Abiu</creatorcontrib><creatorcontrib>Cervantes-Uribe, Adrián</creatorcontrib><creatorcontrib>Arévalo-Pérez, Juan Carlos</creatorcontrib><creatorcontrib>Cordero-Garcia, Adrián</creatorcontrib><creatorcontrib>de los Monteros, Alejandra E. Espinosa</creatorcontrib><creatorcontrib>Espinosa-González, Claudia G.</creatorcontrib><creatorcontrib>Godavarthi, Srinivas</creatorcontrib><creatorcontrib>Ortiz-Chi, Filiberto</creatorcontrib><creatorcontrib>Guerra-Que, Zenaida</creatorcontrib><creatorcontrib>Torres-Torres, José Gilberto</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Córdova-Pérez, Gerardo E.</au><au>Cortez-Elizalde, Jorge</au><au>Silahua-Pavón, Adib Abiu</au><au>Cervantes-Uribe, Adrián</au><au>Arévalo-Pérez, Juan Carlos</au><au>Cordero-Garcia, Adrián</au><au>de los Monteros, Alejandra E. Espinosa</au><au>Espinosa-González, Claudia G.</au><au>Godavarthi, Srinivas</au><au>Ortiz-Chi, Filiberto</au><au>Guerra-Que, Zenaida</au><au>Torres-Torres, José Gilberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-06-11</date><risdate>2022</risdate><volume>12</volume><issue>12</issue><spage>2017</spage><pages>2017-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35745357</pmid><doi>10.3390/nano12122017</doi><orcidid>https://orcid.org/0000-0002-2859-7633</orcidid><orcidid>https://orcid.org/0000-0002-5325-6216</orcidid><orcidid>https://orcid.org/0000-0002-8734-5575</orcidid><orcidid>https://orcid.org/0000-0003-3545-2683</orcidid><orcidid>https://orcid.org/0000-0001-8389-7930</orcidid><orcidid>https://orcid.org/0000-0003-1551-2570</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2022-06, Vol.12 (12), p.2017 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f2ea830f14e94a339bdabf88811767a4 |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Acetic acid Acidity Acids Ammonium Ammonium hydroxide Biodiesel fuels Biofuels Carbon Catalysts Catalytic activity Cellulose Climate change Energy Esterification Ethanol Heavy metals Hydrogenation Levulinic acid Lewis acid Nanoparticles Ni/Al2O3-TiO2 nanocatalysts NMR Noble metals Nuclear magnetic resonance Particle size pH effects Sol-gel processes Solvents Synthesis Tungsten X ray photoelectron spectroscopy y-valerolactone |
title | γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B3-Valerolactone%20Production%20from%20Levulinic%20Acid%20Hydrogenation%20Using%20Ni%20Supported%20Nanoparticles:%20Influence%20of%20Tungsten%20Loading%20and%20pH%20of%20Synthesis&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=C%C3%B3rdova-P%C3%A9rez,%20Gerardo%20E.&rft.date=2022-06-11&rft.volume=12&rft.issue=12&rft.spage=2017&rft.pages=2017-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12122017&rft_dat=%3Cproquest_doaj_%3E2679803952%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679803952&rft_id=info:pmid/35745357&rfr_iscdi=true |