Loading…

γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis

γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using met...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (12), p.2017
Main Authors: Córdova-Pérez, Gerardo E., Cortez-Elizalde, Jorge, Silahua-Pavón, Adib Abiu, Cervantes-Uribe, Adrián, Arévalo-Pérez, Juan Carlos, Cordero-Garcia, Adrián, de los Monteros, Alejandra E. Espinosa, Espinosa-González, Claudia G., Godavarthi, Srinivas, Ortiz-Chi, Filiberto, Guerra-Que, Zenaida, Torres-Torres, José Gilberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3
cites cdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3
container_end_page
container_issue 12
container_start_page 2017
container_title Nanomaterials (Basel, Switzerland)
container_volume 12
creator Córdova-Pérez, Gerardo E.
Cortez-Elizalde, Jorge
Silahua-Pavón, Adib Abiu
Cervantes-Uribe, Adrián
Arévalo-Pérez, Juan Carlos
Cordero-Garcia, Adrián
de los Monteros, Alejandra E. Espinosa
Espinosa-González, Claudia G.
Godavarthi, Srinivas
Ortiz-Chi, Filiberto
Guerra-Que, Zenaida
Torres-Torres, José Gilberto
description γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.
doi_str_mv 10.3390/nano12122017
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f2ea830f14e94a339bdabf88811767a4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f2ea830f14e94a339bdabf88811767a4</doaj_id><sourcerecordid>2679803952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</originalsourceid><addsrcrecordid>eNpdkt1qFDEUgAdRbKm98wEC3njhav5mknghlKLuwlKFtt6GTHJmmmU2GZOZwj6Gz-J7-Exmu4u05iIJOd_5ODmcqnpN8HvGFP4QTIiEEkoxEc-qU4qFWnClyPNH95PqPOcNLksRJmv2sjphteB12U6rX39-L36YAVIcjJ1iAPQ9RTfbyceAuhS3aA338-CDt-jCeoeWO5diD8E8ELfZhx5deXQ9j2NMEzh0VUoaTZq8HSB_RKvQDTMECyh26GYOfZ4goHU0bp9pgkPjch-63oXpDrLPr6oXnRkynB_Ps-r2y-eby-Vi_e3r6vJivbC8rqeF7DjrakEF5koKpbBqmJFcYd5wgTvCnTXctk5Qa1spbWuANLbmmBPAXFh2Vq0OXhfNRo_Jb03a6Wi8fniIqdfHX-iOgpFsLwXFTWl860zbSSkJEY0wvLg-HVzj3G7BWQhTMsMT6dNI8He6j_daUVo0sgjeHgUp_pwhT3rrs4VhMAHinDVtJMGMS9IU9M1_6CbOKZRWFUooiZmqaaHeHSibYs4Jun_FEKz3o6Mfjw77C8Rqt8o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679803952</pqid></control><display><type>article</type><title>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Córdova-Pérez, Gerardo E. ; Cortez-Elizalde, Jorge ; Silahua-Pavón, Adib Abiu ; Cervantes-Uribe, Adrián ; Arévalo-Pérez, Juan Carlos ; Cordero-Garcia, Adrián ; de los Monteros, Alejandra E. Espinosa ; Espinosa-González, Claudia G. ; Godavarthi, Srinivas ; Ortiz-Chi, Filiberto ; Guerra-Que, Zenaida ; Torres-Torres, José Gilberto</creator><creatorcontrib>Córdova-Pérez, Gerardo E. ; Cortez-Elizalde, Jorge ; Silahua-Pavón, Adib Abiu ; Cervantes-Uribe, Adrián ; Arévalo-Pérez, Juan Carlos ; Cordero-Garcia, Adrián ; de los Monteros, Alejandra E. Espinosa ; Espinosa-González, Claudia G. ; Godavarthi, Srinivas ; Ortiz-Chi, Filiberto ; Guerra-Que, Zenaida ; Torres-Torres, José Gilberto</creatorcontrib><description>γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12122017</identifier><identifier>PMID: 35745357</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acetic acid ; Acidity ; Acids ; Ammonium ; Ammonium hydroxide ; Biodiesel fuels ; Biofuels ; Carbon ; Catalysts ; Catalytic activity ; Cellulose ; Climate change ; Energy ; Esterification ; Ethanol ; Heavy metals ; Hydrogenation ; Levulinic acid ; Lewis acid ; Nanoparticles ; Ni/Al2O3-TiO2 nanocatalysts ; NMR ; Noble metals ; Nuclear magnetic resonance ; Particle size ; pH effects ; Sol-gel processes ; Solvents ; Synthesis ; Tungsten ; X ray photoelectron spectroscopy ; y-valerolactone</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-06, Vol.12 (12), p.2017</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</citedby><cites>FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</cites><orcidid>0000-0002-2859-7633 ; 0000-0002-5325-6216 ; 0000-0002-8734-5575 ; 0000-0003-3545-2683 ; 0000-0001-8389-7930 ; 0000-0003-1551-2570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679803952/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679803952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Córdova-Pérez, Gerardo E.</creatorcontrib><creatorcontrib>Cortez-Elizalde, Jorge</creatorcontrib><creatorcontrib>Silahua-Pavón, Adib Abiu</creatorcontrib><creatorcontrib>Cervantes-Uribe, Adrián</creatorcontrib><creatorcontrib>Arévalo-Pérez, Juan Carlos</creatorcontrib><creatorcontrib>Cordero-Garcia, Adrián</creatorcontrib><creatorcontrib>de los Monteros, Alejandra E. Espinosa</creatorcontrib><creatorcontrib>Espinosa-González, Claudia G.</creatorcontrib><creatorcontrib>Godavarthi, Srinivas</creatorcontrib><creatorcontrib>Ortiz-Chi, Filiberto</creatorcontrib><creatorcontrib>Guerra-Que, Zenaida</creatorcontrib><creatorcontrib>Torres-Torres, José Gilberto</creatorcontrib><title>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</title><title>Nanomaterials (Basel, Switzerland)</title><description>γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.</description><subject>Acetic acid</subject><subject>Acidity</subject><subject>Acids</subject><subject>Ammonium</subject><subject>Ammonium hydroxide</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cellulose</subject><subject>Climate change</subject><subject>Energy</subject><subject>Esterification</subject><subject>Ethanol</subject><subject>Heavy metals</subject><subject>Hydrogenation</subject><subject>Levulinic acid</subject><subject>Lewis acid</subject><subject>Nanoparticles</subject><subject>Ni/Al2O3-TiO2 nanocatalysts</subject><subject>NMR</subject><subject>Noble metals</subject><subject>Nuclear magnetic resonance</subject><subject>Particle size</subject><subject>pH effects</subject><subject>Sol-gel processes</subject><subject>Solvents</subject><subject>Synthesis</subject><subject>Tungsten</subject><subject>X ray photoelectron spectroscopy</subject><subject>y-valerolactone</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1qFDEUgAdRbKm98wEC3njhav5mknghlKLuwlKFtt6GTHJmmmU2GZOZwj6Gz-J7-Exmu4u05iIJOd_5ODmcqnpN8HvGFP4QTIiEEkoxEc-qU4qFWnClyPNH95PqPOcNLksRJmv2sjphteB12U6rX39-L36YAVIcjJ1iAPQ9RTfbyceAuhS3aA338-CDt-jCeoeWO5diD8E8ELfZhx5deXQ9j2NMEzh0VUoaTZq8HSB_RKvQDTMECyh26GYOfZ4goHU0bp9pgkPjch-63oXpDrLPr6oXnRkynB_Ps-r2y-eby-Vi_e3r6vJivbC8rqeF7DjrakEF5koKpbBqmJFcYd5wgTvCnTXctk5Qa1spbWuANLbmmBPAXFh2Vq0OXhfNRo_Jb03a6Wi8fniIqdfHX-iOgpFsLwXFTWl860zbSSkJEY0wvLg-HVzj3G7BWQhTMsMT6dNI8He6j_daUVo0sgjeHgUp_pwhT3rrs4VhMAHinDVtJMGMS9IU9M1_6CbOKZRWFUooiZmqaaHeHSibYs4Jun_FEKz3o6Mfjw77C8Rqt8o</recordid><startdate>20220611</startdate><enddate>20220611</enddate><creator>Córdova-Pérez, Gerardo E.</creator><creator>Cortez-Elizalde, Jorge</creator><creator>Silahua-Pavón, Adib Abiu</creator><creator>Cervantes-Uribe, Adrián</creator><creator>Arévalo-Pérez, Juan Carlos</creator><creator>Cordero-Garcia, Adrián</creator><creator>de los Monteros, Alejandra E. Espinosa</creator><creator>Espinosa-González, Claudia G.</creator><creator>Godavarthi, Srinivas</creator><creator>Ortiz-Chi, Filiberto</creator><creator>Guerra-Que, Zenaida</creator><creator>Torres-Torres, José Gilberto</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2859-7633</orcidid><orcidid>https://orcid.org/0000-0002-5325-6216</orcidid><orcidid>https://orcid.org/0000-0002-8734-5575</orcidid><orcidid>https://orcid.org/0000-0003-3545-2683</orcidid><orcidid>https://orcid.org/0000-0001-8389-7930</orcidid><orcidid>https://orcid.org/0000-0003-1551-2570</orcidid></search><sort><creationdate>20220611</creationdate><title>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</title><author>Córdova-Pérez, Gerardo E. ; Cortez-Elizalde, Jorge ; Silahua-Pavón, Adib Abiu ; Cervantes-Uribe, Adrián ; Arévalo-Pérez, Juan Carlos ; Cordero-Garcia, Adrián ; de los Monteros, Alejandra E. Espinosa ; Espinosa-González, Claudia G. ; Godavarthi, Srinivas ; Ortiz-Chi, Filiberto ; Guerra-Que, Zenaida ; Torres-Torres, José Gilberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Acidity</topic><topic>Acids</topic><topic>Ammonium</topic><topic>Ammonium hydroxide</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cellulose</topic><topic>Climate change</topic><topic>Energy</topic><topic>Esterification</topic><topic>Ethanol</topic><topic>Heavy metals</topic><topic>Hydrogenation</topic><topic>Levulinic acid</topic><topic>Lewis acid</topic><topic>Nanoparticles</topic><topic>Ni/Al2O3-TiO2 nanocatalysts</topic><topic>NMR</topic><topic>Noble metals</topic><topic>Nuclear magnetic resonance</topic><topic>Particle size</topic><topic>pH effects</topic><topic>Sol-gel processes</topic><topic>Solvents</topic><topic>Synthesis</topic><topic>Tungsten</topic><topic>X ray photoelectron spectroscopy</topic><topic>y-valerolactone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Córdova-Pérez, Gerardo E.</creatorcontrib><creatorcontrib>Cortez-Elizalde, Jorge</creatorcontrib><creatorcontrib>Silahua-Pavón, Adib Abiu</creatorcontrib><creatorcontrib>Cervantes-Uribe, Adrián</creatorcontrib><creatorcontrib>Arévalo-Pérez, Juan Carlos</creatorcontrib><creatorcontrib>Cordero-Garcia, Adrián</creatorcontrib><creatorcontrib>de los Monteros, Alejandra E. Espinosa</creatorcontrib><creatorcontrib>Espinosa-González, Claudia G.</creatorcontrib><creatorcontrib>Godavarthi, Srinivas</creatorcontrib><creatorcontrib>Ortiz-Chi, Filiberto</creatorcontrib><creatorcontrib>Guerra-Que, Zenaida</creatorcontrib><creatorcontrib>Torres-Torres, José Gilberto</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Córdova-Pérez, Gerardo E.</au><au>Cortez-Elizalde, Jorge</au><au>Silahua-Pavón, Adib Abiu</au><au>Cervantes-Uribe, Adrián</au><au>Arévalo-Pérez, Juan Carlos</au><au>Cordero-Garcia, Adrián</au><au>de los Monteros, Alejandra E. Espinosa</au><au>Espinosa-González, Claudia G.</au><au>Godavarthi, Srinivas</au><au>Ortiz-Chi, Filiberto</au><au>Guerra-Que, Zenaida</au><au>Torres-Torres, José Gilberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-06-11</date><risdate>2022</risdate><volume>12</volume><issue>12</issue><spage>2017</spage><pages>2017-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35745357</pmid><doi>10.3390/nano12122017</doi><orcidid>https://orcid.org/0000-0002-2859-7633</orcidid><orcidid>https://orcid.org/0000-0002-5325-6216</orcidid><orcidid>https://orcid.org/0000-0002-8734-5575</orcidid><orcidid>https://orcid.org/0000-0003-3545-2683</orcidid><orcidid>https://orcid.org/0000-0001-8389-7930</orcidid><orcidid>https://orcid.org/0000-0003-1551-2570</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2022-06, Vol.12 (12), p.2017
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f2ea830f14e94a339bdabf88811767a4
source PubMed Central (Open Access); Publicly Available Content Database
subjects Acetic acid
Acidity
Acids
Ammonium
Ammonium hydroxide
Biodiesel fuels
Biofuels
Carbon
Catalysts
Catalytic activity
Cellulose
Climate change
Energy
Esterification
Ethanol
Heavy metals
Hydrogenation
Levulinic acid
Lewis acid
Nanoparticles
Ni/Al2O3-TiO2 nanocatalysts
NMR
Noble metals
Nuclear magnetic resonance
Particle size
pH effects
Sol-gel processes
Solvents
Synthesis
Tungsten
X ray photoelectron spectroscopy
y-valerolactone
title γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B3-Valerolactone%20Production%20from%20Levulinic%20Acid%20Hydrogenation%20Using%20Ni%20Supported%20Nanoparticles:%20Influence%20of%20Tungsten%20Loading%20and%20pH%20of%20Synthesis&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=C%C3%B3rdova-P%C3%A9rez,%20Gerardo%20E.&rft.date=2022-06-11&rft.volume=12&rft.issue=12&rft.spage=2017&rft.pages=2017-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12122017&rft_dat=%3Cproquest_doaj_%3E2679803952%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-8f43f572704987990963a849046470f14dca4cbd72ccb88cbae16c54041e047c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679803952&rft_id=info:pmid/35745357&rfr_iscdi=true