Loading…
An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA...
Saved in:
Published in: | Nature communications 2022-12, Vol.13 (1), p.7671-18, Article 7671 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-c38cc7d9c7469e550ffa6264d1cd34e9878fff499fe4e348a6fd5c39b2591bef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-c38cc7d9c7469e550ffa6264d1cd34e9878fff499fe4e348a6fd5c39b2591bef3 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 7671 |
container_title | Nature communications |
container_volume | 13 |
creator | Ramos, Susana I. Mussa, Zarmeen M. Falk, Elisa N. Pai, Balagopal Giotti, Bruno Allette, Kimaada Cai, Peiwen Dekio, Fumiko Sebra, Robert Beaumont, Kristin G. Tsankov, Alexander M. Tsankova, Nadejda M. |
description | Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. Here, authors use human transcriptomics to capture transience and diversity of cells in middle and late prenatal development, including glial progenitor signatures. |
doi_str_mv | 10.1038/s41467-022-34975-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f31342a967ee47e0acf711c820e990c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f31342a967ee47e0acf711c820e990c0</doaj_id><sourcerecordid>2753448286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c38cc7d9c7469e550ffa6264d1cd34e9878fff499fe4e348a6fd5c39b2591bef3</originalsourceid><addsrcrecordid>eNp9kk1vFSEUhonR2ObaP-DCkLhxM8rXDLAxaRq1TZq40ZULwmUOt3PDwAgzN-m_l9tpa-tCNhDOy8P5eBF6S8lHSrj6VAQVnWwIYw0XWrYNe4FOGRG0oZLxl0_OJ-islD2pi2uqhHiNTnjXEi1Fd4p-nUds52ALTh4HOwOeMkQ724BvltFGHGHJqYcDhDSNEGecoaRwgB5vb3EZ4i5AExcXYCl4zjYWl4dpTuPgyhv0yttQ4Ox-36CfX7_8uLhsrr9_u7o4v25cK8jcOK6ck712NSENbUu8tx3rRE9dzwVoJZX3XmjtQQAXyna-bx3XW9ZqugXPN-hq5fbJ7s2Uh9HmW5PsYO4uUt4Zm-eh5mg8p1wwqzsJICQQ67yk1ClGQGviSGV9XlnTsh2hd7XibMMz6PNIHG7MLh1MbaeQQlbAh3tATr8XKLMZh-IgBBshLcUwWYsWStXBbND7f6T7tORYW3VUcSEUU11VsVXlciolg39MhhJztIJZrWCqFcydFcwR_e5pGY9PHgZfBXwVlBqKO8h___4P9g_ptsC7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753448286</pqid></control><display><type>article</type><title>An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ramos, Susana I. ; Mussa, Zarmeen M. ; Falk, Elisa N. ; Pai, Balagopal ; Giotti, Bruno ; Allette, Kimaada ; Cai, Peiwen ; Dekio, Fumiko ; Sebra, Robert ; Beaumont, Kristin G. ; Tsankov, Alexander M. ; Tsankova, Nadejda M.</creator><creatorcontrib>Ramos, Susana I. ; Mussa, Zarmeen M. ; Falk, Elisa N. ; Pai, Balagopal ; Giotti, Bruno ; Allette, Kimaada ; Cai, Peiwen ; Dekio, Fumiko ; Sebra, Robert ; Beaumont, Kristin G. ; Tsankov, Alexander M. ; Tsankova, Nadejda M.</creatorcontrib><description>Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. Here, authors use human transcriptomics to capture transience and diversity of cells in middle and late prenatal development, including glial progenitor signatures.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-34975-2</identifier><identifier>PMID: 36509746</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/51 ; 38/39 ; 45 ; 45/91 ; 631/136/142 ; 631/378/2571/2580 ; 631/378/2582 ; Cell Differentiation - genetics ; Cells (biology) ; Cerebral cortex ; Child ; Computational neuroscience ; Critical period ; Gene sequencing ; Glial stem cells ; Glioblastoma ; Gliogenesis ; Humanities and Social Sciences ; Humans ; Interrogation ; Laminating ; multidisciplinary ; Neocortex ; Neurogenesis - genetics ; Neuroglia - metabolism ; Nuclei (cytology) ; Oligodendroglia ; Pediatrics ; Prenatal development ; Progenitor cells ; Science ; Science (multidisciplinary) ; Stem Cells - metabolism ; Subpopulations ; Temporal resolution ; Transcriptomics ; Tumors</subject><ispartof>Nature communications, 2022-12, Vol.13 (1), p.7671-18, Article 7671</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c38cc7d9c7469e550ffa6264d1cd34e9878fff499fe4e348a6fd5c39b2591bef3</citedby><cites>FETCH-LOGICAL-c540t-c38cc7d9c7469e550ffa6264d1cd34e9878fff499fe4e348a6fd5c39b2591bef3</cites><orcidid>0000-0002-5333-312X ; 0000-0002-4344-4694 ; 0000-0003-3196-055X ; 0000-0003-3075-9977 ; 0000-0002-7955-4414 ; 0000-0003-4774-4392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2753448286/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2753448286?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36509746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos, Susana I.</creatorcontrib><creatorcontrib>Mussa, Zarmeen M.</creatorcontrib><creatorcontrib>Falk, Elisa N.</creatorcontrib><creatorcontrib>Pai, Balagopal</creatorcontrib><creatorcontrib>Giotti, Bruno</creatorcontrib><creatorcontrib>Allette, Kimaada</creatorcontrib><creatorcontrib>Cai, Peiwen</creatorcontrib><creatorcontrib>Dekio, Fumiko</creatorcontrib><creatorcontrib>Sebra, Robert</creatorcontrib><creatorcontrib>Beaumont, Kristin G.</creatorcontrib><creatorcontrib>Tsankov, Alexander M.</creatorcontrib><creatorcontrib>Tsankova, Nadejda M.</creatorcontrib><title>An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. Here, authors use human transcriptomics to capture transience and diversity of cells in middle and late prenatal development, including glial progenitor signatures.</description><subject>13</subject><subject>13/51</subject><subject>38/39</subject><subject>45</subject><subject>45/91</subject><subject>631/136/142</subject><subject>631/378/2571/2580</subject><subject>631/378/2582</subject><subject>Cell Differentiation - genetics</subject><subject>Cells (biology)</subject><subject>Cerebral cortex</subject><subject>Child</subject><subject>Computational neuroscience</subject><subject>Critical period</subject><subject>Gene sequencing</subject><subject>Glial stem cells</subject><subject>Glioblastoma</subject><subject>Gliogenesis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Interrogation</subject><subject>Laminating</subject><subject>multidisciplinary</subject><subject>Neocortex</subject><subject>Neurogenesis - genetics</subject><subject>Neuroglia - metabolism</subject><subject>Nuclei (cytology)</subject><subject>Oligodendroglia</subject><subject>Pediatrics</subject><subject>Prenatal development</subject><subject>Progenitor cells</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem Cells - metabolism</subject><subject>Subpopulations</subject><subject>Temporal resolution</subject><subject>Transcriptomics</subject><subject>Tumors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFSEUhonR2ObaP-DCkLhxM8rXDLAxaRq1TZq40ZULwmUOt3PDwAgzN-m_l9tpa-tCNhDOy8P5eBF6S8lHSrj6VAQVnWwIYw0XWrYNe4FOGRG0oZLxl0_OJ-islD2pi2uqhHiNTnjXEi1Fd4p-nUds52ALTh4HOwOeMkQ724BvltFGHGHJqYcDhDSNEGecoaRwgB5vb3EZ4i5AExcXYCl4zjYWl4dpTuPgyhv0yttQ4Ox-36CfX7_8uLhsrr9_u7o4v25cK8jcOK6ck712NSENbUu8tx3rRE9dzwVoJZX3XmjtQQAXyna-bx3XW9ZqugXPN-hq5fbJ7s2Uh9HmW5PsYO4uUt4Zm-eh5mg8p1wwqzsJICQQ67yk1ClGQGviSGV9XlnTsh2hd7XibMMz6PNIHG7MLh1MbaeQQlbAh3tATr8XKLMZh-IgBBshLcUwWYsWStXBbND7f6T7tORYW3VUcSEUU11VsVXlciolg39MhhJztIJZrWCqFcydFcwR_e5pGY9PHgZfBXwVlBqKO8h___4P9g_ptsC7</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Ramos, Susana I.</creator><creator>Mussa, Zarmeen M.</creator><creator>Falk, Elisa N.</creator><creator>Pai, Balagopal</creator><creator>Giotti, Bruno</creator><creator>Allette, Kimaada</creator><creator>Cai, Peiwen</creator><creator>Dekio, Fumiko</creator><creator>Sebra, Robert</creator><creator>Beaumont, Kristin G.</creator><creator>Tsankov, Alexander M.</creator><creator>Tsankova, Nadejda M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5333-312X</orcidid><orcidid>https://orcid.org/0000-0002-4344-4694</orcidid><orcidid>https://orcid.org/0000-0003-3196-055X</orcidid><orcidid>https://orcid.org/0000-0003-3075-9977</orcidid><orcidid>https://orcid.org/0000-0002-7955-4414</orcidid><orcidid>https://orcid.org/0000-0003-4774-4392</orcidid></search><sort><creationdate>20221212</creationdate><title>An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics</title><author>Ramos, Susana I. ; Mussa, Zarmeen M. ; Falk, Elisa N. ; Pai, Balagopal ; Giotti, Bruno ; Allette, Kimaada ; Cai, Peiwen ; Dekio, Fumiko ; Sebra, Robert ; Beaumont, Kristin G. ; Tsankov, Alexander M. ; Tsankova, Nadejda M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c38cc7d9c7469e550ffa6264d1cd34e9878fff499fe4e348a6fd5c39b2591bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13</topic><topic>13/51</topic><topic>38/39</topic><topic>45</topic><topic>45/91</topic><topic>631/136/142</topic><topic>631/378/2571/2580</topic><topic>631/378/2582</topic><topic>Cell Differentiation - genetics</topic><topic>Cells (biology)</topic><topic>Cerebral cortex</topic><topic>Child</topic><topic>Computational neuroscience</topic><topic>Critical period</topic><topic>Gene sequencing</topic><topic>Glial stem cells</topic><topic>Glioblastoma</topic><topic>Gliogenesis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Interrogation</topic><topic>Laminating</topic><topic>multidisciplinary</topic><topic>Neocortex</topic><topic>Neurogenesis - genetics</topic><topic>Neuroglia - metabolism</topic><topic>Nuclei (cytology)</topic><topic>Oligodendroglia</topic><topic>Pediatrics</topic><topic>Prenatal development</topic><topic>Progenitor cells</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem Cells - metabolism</topic><topic>Subpopulations</topic><topic>Temporal resolution</topic><topic>Transcriptomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Susana I.</creatorcontrib><creatorcontrib>Mussa, Zarmeen M.</creatorcontrib><creatorcontrib>Falk, Elisa N.</creatorcontrib><creatorcontrib>Pai, Balagopal</creatorcontrib><creatorcontrib>Giotti, Bruno</creatorcontrib><creatorcontrib>Allette, Kimaada</creatorcontrib><creatorcontrib>Cai, Peiwen</creatorcontrib><creatorcontrib>Dekio, Fumiko</creatorcontrib><creatorcontrib>Sebra, Robert</creatorcontrib><creatorcontrib>Beaumont, Kristin G.</creatorcontrib><creatorcontrib>Tsankov, Alexander M.</creatorcontrib><creatorcontrib>Tsankova, Nadejda M.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Susana I.</au><au>Mussa, Zarmeen M.</au><au>Falk, Elisa N.</au><au>Pai, Balagopal</au><au>Giotti, Bruno</au><au>Allette, Kimaada</au><au>Cai, Peiwen</au><au>Dekio, Fumiko</au><au>Sebra, Robert</au><au>Beaumont, Kristin G.</au><au>Tsankov, Alexander M.</au><au>Tsankova, Nadejda M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-12-12</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>7671</spage><epage>18</epage><pages>7671-18</pages><artnum>7671</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. Here, authors use human transcriptomics to capture transience and diversity of cells in middle and late prenatal development, including glial progenitor signatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36509746</pmid><doi>10.1038/s41467-022-34975-2</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5333-312X</orcidid><orcidid>https://orcid.org/0000-0002-4344-4694</orcidid><orcidid>https://orcid.org/0000-0003-3196-055X</orcidid><orcidid>https://orcid.org/0000-0003-3075-9977</orcidid><orcidid>https://orcid.org/0000-0002-7955-4414</orcidid><orcidid>https://orcid.org/0000-0003-4774-4392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-12, Vol.13 (1), p.7671-18, Article 7671 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f31342a967ee47e0acf711c820e990c0 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/51 38/39 45 45/91 631/136/142 631/378/2571/2580 631/378/2582 Cell Differentiation - genetics Cells (biology) Cerebral cortex Child Computational neuroscience Critical period Gene sequencing Glial stem cells Glioblastoma Gliogenesis Humanities and Social Sciences Humans Interrogation Laminating multidisciplinary Neocortex Neurogenesis - genetics Neuroglia - metabolism Nuclei (cytology) Oligodendroglia Pediatrics Prenatal development Progenitor cells Science Science (multidisciplinary) Stem Cells - metabolism Subpopulations Temporal resolution Transcriptomics Tumors |
title | An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20atlas%20of%20late%20prenatal%20human%20neurodevelopment%20resolved%20by%20single-nucleus%20transcriptomics&rft.jtitle=Nature%20communications&rft.au=Ramos,%20Susana%20I.&rft.date=2022-12-12&rft.volume=13&rft.issue=1&rft.spage=7671&rft.epage=18&rft.pages=7671-18&rft.artnum=7671&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-34975-2&rft_dat=%3Cproquest_doaj_%3E2753448286%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-c38cc7d9c7469e550ffa6264d1cd34e9878fff499fe4e348a6fd5c39b2591bef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2753448286&rft_id=info:pmid/36509746&rfr_iscdi=true |