Loading…

Effect of Ionic Liquids on the Physical Properties of the Newly Synthesized Conducting Polymer

Conducting polymer has many applications in electronics, optical devices, sensors, and so on; however, there is still a massive scope of improvement in this area. Therefore, towards this aim, in this study, we synthesized a new thiophene-based conducting polymer, 2-heptadecyl-5-hexyl-6-(5-methylthio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of polymer science 2018-01, Vol.2018 (2018), p.1-8
Main Authors: Attri, Pankaj, Kwon, Gi-Chung, Han, Ji Woong, Jeong, Jin Yeong, Lee, Dong Uk, Kim, In Tae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conducting polymer has many applications in electronics, optical devices, sensors, and so on; however, there is still a massive scope of improvement in this area. Therefore, towards this aim, in this study, we synthesized a new thiophene-based conducting polymer, 2-heptadecyl-5-hexyl-6-(5-methylthiophen-2-yl)-4-(5-((E)-prop-1-enyl)thiophen-2-yl)-5H-pyrrolo[3,4-d]thiazole (HHMPT). Further, to increase its application, the interactions between the conducting polymer (HHMPT) and ionic liquids (ILs) were investigated by UV-Vis spectroscopy, FTIR spectroscopy, and confocal Raman spectroscopy techniques. Moreover, film roughness and conductivity of the polymer film with or without ILs were also studied. The imidazolium- and ammonium family ILs with the potential to interact with the newly synthesized conducting polymer were used. The results of the interaction studies revealed that the imidazolium family IL-polymer mixtures and ammonium family IL-polymer mixtures have almost similar conductivity at low concentration of ILs. This study provides an insight into the combined effect of a polymer and ILs and may generate many theoretical and experimental opportunities.
ISSN:1687-9422
1687-9430
DOI:10.1155/2018/8275985