Loading…

Thermo-sensitive Poloxamer based antibacterial anti-inflammatory and photothermal conductive multifunctional hydrogel as injectable, in situ curable and adjustable intraocular lens

Cataract patients look forwards to fewer postoperative complications and higher vision quality after surgery. However, the current intraocular lens (IOL) implanted after cataract surgery neither can adjust focal length in response to ciliary muscle contraction as natural lens nor have the ability to...

Full description

Saved in:
Bibliographic Details
Published in:Bioactive materials 2024-11, Vol.41, p.30-45
Main Authors: Qin, Chen, Fei, Fan, Wei, Youfei, Han, Yuemei, Hu, Di, Lin, Quankui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cataract patients look forwards to fewer postoperative complications and higher vision quality after surgery. However, the current intraocular lens (IOL) implanted after cataract surgery neither can adjust focal length in response to ciliary muscle contraction as natural lens nor have the ability to prevent postoperative complications. Herein, a thermosensitve Poloxamer based hybrid hydrogel with antibacterial anti-inflammatory and photothermal functional elements doping was designed and used as injectable, in situ curable, and adjustable IOL (FHTAB IOL). The FHTAB IOL was composed of thermosensitve triblock-polymer F127DA and a small amount of HAMA, combined with BP NS, TA, and Ag NPs. FHTAB IOL can be injected into the empty lens capsule after cataract surgery via an injectable thermos-gel under NIR illumination and then be rapidly cured to form a full-size IOL under short-time blue light irradiation. The designed injectable FHTAB IOL possesses high transparency and transmittance, with a refractive index similar to the natural lens and adjustable properties. It was stabilized as a refractive medium without any leakage in the eye. In addition, the TA and Ag NPs loaded in the FHTAB IOL displayed significant antibacterial and anti-inflammatory effects in vitro and vivo. This study presents a potentially effective new strategy for the development of multifunctional adjustable IOLs. [Display omitted] •Injectable, in situ curable and adjustable hydrogel based FTHAB IOL was engineered.•FTHAB IOL exhibited good optical properties, similar refractive index with natural lens and certain adjustability.•FTHAB IOL exhibited good antibacterial and anti-inflammatory properties which may reduce postoperative complications.•Thermo- and photo- dual curing processes design prevent the material leakage during the intraocular injection.
ISSN:2452-199X
2097-1192
2452-199X
DOI:10.1016/j.bioactmat.2024.07.005