Loading…

A seven-sex species recognizes self and non-self mating-type via a novel protein complex

Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate has seven mating types, which are determined by the MTA and MTB...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2024-02, Vol.13
Main Authors: Yan, Guanxiong, Ma, Yang, Wang, Yanfang, Zhang, Jing, Cheng, Haoming, Tan, Fanjie, Wang, Su, Zhang, Delin, Xiong, Jie, Yin, Ping, Miao, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.93770