Loading…

Explainable Machine Learning Solution for Observing Optimal Surgery Timings in Thoracic Cancer Diagnosis

In this paper, we introduce an AI-based procedure to estimate and assist in choosing the optimal surgery timing, in the case of a thoracic cancer diagnostic, based on an explainable machine learning model trained on a knowledge base. This decision is usually taken by the surgeon after examining a se...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-07, Vol.12 (13), p.6506
Main Authors: Cozma, Gabriel V., Onchis, Darian, Istin, Codruta, Petrache, Ioan Adrian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we introduce an AI-based procedure to estimate and assist in choosing the optimal surgery timing, in the case of a thoracic cancer diagnostic, based on an explainable machine learning model trained on a knowledge base. This decision is usually taken by the surgeon after examining a set of clinical parameters and their evolution in time. Therefore, it is sometimes subjective, it depends heavily on the previous experience of the surgeon, and it might not be confirmed by the histopathological exam. Therefore, we propose a pipeline of automatic processing steps with the purpose of inferring the prospective result of the histopathologic exam, generating an explanation of why this inference holds, and finally, evaluating it against the conclusive opinion of an experienced surgeon. To obtain an accurate practical result, the training dataset is labeled manually by the thoracic surgeon, creating a training knowledge base that is not biased towards clinical practice. The resulting intelligent system benefits from both the precision of a classical expert system and the flexibility of deep neural networks, and it is supposed to avoid, at maximum, any possible human misinterpretations and provide a factual estimate for the proper timing for surgical intervention. Overall, the experiments showed a 7% improvement on the test set compared with the medical opinion alone. To enable the reproducibility of the AI system, complete handling of a case study is presented from both the medical and technical aspects.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12136506