Loading…

Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio

The contemporary crustal stress state is primarily driven by gravitational volume forces and plate tectonics. However, there are various smaller-scale sources such as geological structures and stiffness contrast that perturb stresses and deviate them from the regional pattern. For example, borehole...

Full description

Saved in:
Bibliographic Details
Published in:Solid earth (Göttingen) 2024-08, Vol.15 (8), p.1047-1063
Main Authors: Ziegler, Moritz O, Seithel, Robin, Niederhuber, Thomas, Heidbach, Oliver, Kohl, Thomas, Müller, Birgit, Rajabi, Mojtaba, Reiter, Karsten, Röckel, Luisa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1063
container_issue 8
container_start_page 1047
container_title Solid earth (Göttingen)
container_volume 15
creator Ziegler, Moritz O
Seithel, Robin
Niederhuber, Thomas
Heidbach, Oliver
Kohl, Thomas
Müller, Birgit
Rajabi, Mojtaba
Reiter, Karsten
Röckel, Luisa
description The contemporary crustal stress state is primarily driven by gravitational volume forces and plate tectonics. However, there are various smaller-scale sources such as geological structures and stiffness contrast that perturb stresses and deviate them from the regional pattern. For example, borehole stress analysis in numerous cases has revealed abrupt rotations of horizontal stress orientation of up to 90° when faults are crossed. Herein, we investigate the rotation of principal stress axes at a fault by means of a 2D generic numerical model. We focus on the near field of the fault and the damage zone with a fault parameterized as a rock stiffness contrast. A substantial influence of the far-field stress field in terms of the differential stress and in terms of the stress ratio RS=S1/S_3 is shown. Furthermore, the contrast in material properties is the basis for any stress rotation, and in particular the stiffness is demonstrated to have a significant influence. Eventually, the impact of the angle between the fault strike and the orientation of S.sub.Hmax is demonstrated. Our results show that the stress rotation is negatively correlated with the ratio of principal far-field stresses. A small angle between the far-field stress orientation and the fault facilitates stress rotation. A high contrast in rock stiffness further increases the stress rotation angle. Faults striking perpendicular to the maximum principal stress orientation experience no rotation at all. However, faults oriented parallel to the maximum principal stress orientation experience either no rotation or a 90° rotation, dependent on the ratio of principal stresses and the rock stiffness contrast. A comparison with observations from various boreholes worldwide shows that in general the findings are in agreement, even though the dip angle proves to have an influence on the stress rotation, in particular for shallow-dipping faults.
doi_str_mv 10.5194/se-15-1047-2024
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f38731f2620649bb90700d9f9cf5f3ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A805874367</galeid><doaj_id>oai_doaj_org_article_f38731f2620649bb90700d9f9cf5f3ee</doaj_id><sourcerecordid>A805874367</sourcerecordid><originalsourceid>FETCH-LOGICAL-d280t-4661c66d08ffa0bc50c6ec42c032f37816b9e488276039b129aa92b466640a443</originalsourceid><addsrcrecordid>eNptkM1LHTEUxYfSgqKu3Qa6Kjh68zH5cCfS1gdCobbrkMncvOb1vYkmGbD_ffNU2gq9WdzL4Zwf4XTdKYXzgRpxUbCnQ09BqJ4BE2-6Q6ql6c3AzNs_N4WD7qSUDbSRiqmBH3b2rmYshZTqKhJXSXDLtpZLUn8giXPYLjh7JCmQnPzPZoshzPuAT3PNrtSzpj0RUo44N0pM8xlx80Ty_j7u3gW3LXjyso-6758-fru-6W-_fF5dX932E9NQeyEl9VJOoENwMPoBvEQvmAfOAleaytGg0JopCdyMlBnnDBtbTApwQvCjbvXMnZLb2Pscdy7_sslF-ySkvLYu1-i3aAPXitPAJAMpzDgaUACTCcaHIXDExnr_zLrP6WHBUu0mLXlu37cczKCZ5Fz9da1dg7aqUuvD72Lx9krDoJXgcu86_4-rvQl3sXWIITb9VeDDq8C-Z3ysa7eUYld3X__1_gZZUZhP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095826337</pqid></control><display><type>article</type><title>Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio</title><source>Publicly Available Content (ProQuest)</source><creator>Ziegler, Moritz O ; Seithel, Robin ; Niederhuber, Thomas ; Heidbach, Oliver ; Kohl, Thomas ; Müller, Birgit ; Rajabi, Mojtaba ; Reiter, Karsten ; Röckel, Luisa</creator><creatorcontrib>Ziegler, Moritz O ; Seithel, Robin ; Niederhuber, Thomas ; Heidbach, Oliver ; Kohl, Thomas ; Müller, Birgit ; Rajabi, Mojtaba ; Reiter, Karsten ; Röckel, Luisa</creatorcontrib><description>The contemporary crustal stress state is primarily driven by gravitational volume forces and plate tectonics. However, there are various smaller-scale sources such as geological structures and stiffness contrast that perturb stresses and deviate them from the regional pattern. For example, borehole stress analysis in numerous cases has revealed abrupt rotations of horizontal stress orientation of up to 90° when faults are crossed. Herein, we investigate the rotation of principal stress axes at a fault by means of a 2D generic numerical model. We focus on the near field of the fault and the damage zone with a fault parameterized as a rock stiffness contrast. A substantial influence of the far-field stress field in terms of the differential stress and in terms of the stress ratio RS=S1/S_3 is shown. Furthermore, the contrast in material properties is the basis for any stress rotation, and in particular the stiffness is demonstrated to have a significant influence. Eventually, the impact of the angle between the fault strike and the orientation of S.sub.Hmax is demonstrated. Our results show that the stress rotation is negatively correlated with the ratio of principal far-field stresses. A small angle between the far-field stress orientation and the fault facilitates stress rotation. A high contrast in rock stiffness further increases the stress rotation angle. Faults striking perpendicular to the maximum principal stress orientation experience no rotation at all. However, faults oriented parallel to the maximum principal stress orientation experience either no rotation or a 90° rotation, dependent on the ratio of principal stresses and the rock stiffness contrast. A comparison with observations from various boreholes worldwide shows that in general the findings are in agreement, even though the dip angle proves to have an influence on the stress rotation, in particular for shallow-dipping faults.</description><identifier>ISSN: 1869-9510</identifier><identifier>EISSN: 1869-9529</identifier><identifier>DOI: 10.5194/se-15-1047-2024</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Boreholes ; Dipping ; Far fields ; Fault lines ; Faults ; Geological structures ; Gravity ; Horizontal orientation ; Material properties ; Mathematical models ; Numerical models ; Orientation ; Pattern analysis ; Plate tectonics ; Rock ; Rocks ; Rotation ; Stiffness ; Stress analysis ; Stress distribution ; Stress ratio ; Stress state ; Tectonics ; Two dimensional analysis</subject><ispartof>Solid earth (Göttingen), 2024-08, Vol.15 (8), p.1047-1063</ispartof><rights>COPYRIGHT 2024 Copernicus GmbH</rights><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3095826337/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3095826337?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25744,27915,27916,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>Ziegler, Moritz O</creatorcontrib><creatorcontrib>Seithel, Robin</creatorcontrib><creatorcontrib>Niederhuber, Thomas</creatorcontrib><creatorcontrib>Heidbach, Oliver</creatorcontrib><creatorcontrib>Kohl, Thomas</creatorcontrib><creatorcontrib>Müller, Birgit</creatorcontrib><creatorcontrib>Rajabi, Mojtaba</creatorcontrib><creatorcontrib>Reiter, Karsten</creatorcontrib><creatorcontrib>Röckel, Luisa</creatorcontrib><title>Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio</title><title>Solid earth (Göttingen)</title><description>The contemporary crustal stress state is primarily driven by gravitational volume forces and plate tectonics. However, there are various smaller-scale sources such as geological structures and stiffness contrast that perturb stresses and deviate them from the regional pattern. For example, borehole stress analysis in numerous cases has revealed abrupt rotations of horizontal stress orientation of up to 90° when faults are crossed. Herein, we investigate the rotation of principal stress axes at a fault by means of a 2D generic numerical model. We focus on the near field of the fault and the damage zone with a fault parameterized as a rock stiffness contrast. A substantial influence of the far-field stress field in terms of the differential stress and in terms of the stress ratio RS=S1/S_3 is shown. Furthermore, the contrast in material properties is the basis for any stress rotation, and in particular the stiffness is demonstrated to have a significant influence. Eventually, the impact of the angle between the fault strike and the orientation of S.sub.Hmax is demonstrated. Our results show that the stress rotation is negatively correlated with the ratio of principal far-field stresses. A small angle between the far-field stress orientation and the fault facilitates stress rotation. A high contrast in rock stiffness further increases the stress rotation angle. Faults striking perpendicular to the maximum principal stress orientation experience no rotation at all. However, faults oriented parallel to the maximum principal stress orientation experience either no rotation or a 90° rotation, dependent on the ratio of principal stresses and the rock stiffness contrast. A comparison with observations from various boreholes worldwide shows that in general the findings are in agreement, even though the dip angle proves to have an influence on the stress rotation, in particular for shallow-dipping faults.</description><subject>Boreholes</subject><subject>Dipping</subject><subject>Far fields</subject><subject>Fault lines</subject><subject>Faults</subject><subject>Geological structures</subject><subject>Gravity</subject><subject>Horizontal orientation</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Orientation</subject><subject>Pattern analysis</subject><subject>Plate tectonics</subject><subject>Rock</subject><subject>Rocks</subject><subject>Rotation</subject><subject>Stiffness</subject><subject>Stress analysis</subject><subject>Stress distribution</subject><subject>Stress ratio</subject><subject>Stress state</subject><subject>Tectonics</subject><subject>Two dimensional analysis</subject><issn>1869-9510</issn><issn>1869-9529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkM1LHTEUxYfSgqKu3Qa6Kjh68zH5cCfS1gdCobbrkMncvOb1vYkmGbD_ffNU2gq9WdzL4Zwf4XTdKYXzgRpxUbCnQ09BqJ4BE2-6Q6ql6c3AzNs_N4WD7qSUDbSRiqmBH3b2rmYshZTqKhJXSXDLtpZLUn8giXPYLjh7JCmQnPzPZoshzPuAT3PNrtSzpj0RUo44N0pM8xlx80Ty_j7u3gW3LXjyso-6758-fru-6W-_fF5dX932E9NQeyEl9VJOoENwMPoBvEQvmAfOAleaytGg0JopCdyMlBnnDBtbTApwQvCjbvXMnZLb2Pscdy7_sslF-ySkvLYu1-i3aAPXitPAJAMpzDgaUACTCcaHIXDExnr_zLrP6WHBUu0mLXlu37cczKCZ5Fz9da1dg7aqUuvD72Lx9krDoJXgcu86_4-rvQl3sXWIITb9VeDDq8C-Z3ysa7eUYld3X__1_gZZUZhP</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Ziegler, Moritz O</creator><creator>Seithel, Robin</creator><creator>Niederhuber, Thomas</creator><creator>Heidbach, Oliver</creator><creator>Kohl, Thomas</creator><creator>Müller, Birgit</creator><creator>Rajabi, Mojtaba</creator><creator>Reiter, Karsten</creator><creator>Röckel, Luisa</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>ISR</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20240823</creationdate><title>Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio</title><author>Ziegler, Moritz O ; Seithel, Robin ; Niederhuber, Thomas ; Heidbach, Oliver ; Kohl, Thomas ; Müller, Birgit ; Rajabi, Mojtaba ; Reiter, Karsten ; Röckel, Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d280t-4661c66d08ffa0bc50c6ec42c032f37816b9e488276039b129aa92b466640a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boreholes</topic><topic>Dipping</topic><topic>Far fields</topic><topic>Fault lines</topic><topic>Faults</topic><topic>Geological structures</topic><topic>Gravity</topic><topic>Horizontal orientation</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Orientation</topic><topic>Pattern analysis</topic><topic>Plate tectonics</topic><topic>Rock</topic><topic>Rocks</topic><topic>Rotation</topic><topic>Stiffness</topic><topic>Stress analysis</topic><topic>Stress distribution</topic><topic>Stress ratio</topic><topic>Stress state</topic><topic>Tectonics</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziegler, Moritz O</creatorcontrib><creatorcontrib>Seithel, Robin</creatorcontrib><creatorcontrib>Niederhuber, Thomas</creatorcontrib><creatorcontrib>Heidbach, Oliver</creatorcontrib><creatorcontrib>Kohl, Thomas</creatorcontrib><creatorcontrib>Müller, Birgit</creatorcontrib><creatorcontrib>Rajabi, Mojtaba</creatorcontrib><creatorcontrib>Reiter, Karsten</creatorcontrib><creatorcontrib>Röckel, Luisa</creatorcontrib><collection>Science (Gale in Context)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>Solid earth (Göttingen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziegler, Moritz O</au><au>Seithel, Robin</au><au>Niederhuber, Thomas</au><au>Heidbach, Oliver</au><au>Kohl, Thomas</au><au>Müller, Birgit</au><au>Rajabi, Mojtaba</au><au>Reiter, Karsten</au><au>Röckel, Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio</atitle><jtitle>Solid earth (Göttingen)</jtitle><date>2024-08-23</date><risdate>2024</risdate><volume>15</volume><issue>8</issue><spage>1047</spage><epage>1063</epage><pages>1047-1063</pages><issn>1869-9510</issn><eissn>1869-9529</eissn><abstract>The contemporary crustal stress state is primarily driven by gravitational volume forces and plate tectonics. However, there are various smaller-scale sources such as geological structures and stiffness contrast that perturb stresses and deviate them from the regional pattern. For example, borehole stress analysis in numerous cases has revealed abrupt rotations of horizontal stress orientation of up to 90° when faults are crossed. Herein, we investigate the rotation of principal stress axes at a fault by means of a 2D generic numerical model. We focus on the near field of the fault and the damage zone with a fault parameterized as a rock stiffness contrast. A substantial influence of the far-field stress field in terms of the differential stress and in terms of the stress ratio RS=S1/S_3 is shown. Furthermore, the contrast in material properties is the basis for any stress rotation, and in particular the stiffness is demonstrated to have a significant influence. Eventually, the impact of the angle between the fault strike and the orientation of S.sub.Hmax is demonstrated. Our results show that the stress rotation is negatively correlated with the ratio of principal far-field stresses. A small angle between the far-field stress orientation and the fault facilitates stress rotation. A high contrast in rock stiffness further increases the stress rotation angle. Faults striking perpendicular to the maximum principal stress orientation experience no rotation at all. However, faults oriented parallel to the maximum principal stress orientation experience either no rotation or a 90° rotation, dependent on the ratio of principal stresses and the rock stiffness contrast. A comparison with observations from various boreholes worldwide shows that in general the findings are in agreement, even though the dip angle proves to have an influence on the stress rotation, in particular for shallow-dipping faults.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/se-15-1047-2024</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-9510
ispartof Solid earth (Göttingen), 2024-08, Vol.15 (8), p.1047-1063
issn 1869-9510
1869-9529
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f38731f2620649bb90700d9f9cf5f3ee
source Publicly Available Content (ProQuest)
subjects Boreholes
Dipping
Far fields
Fault lines
Faults
Geological structures
Gravity
Horizontal orientation
Material properties
Mathematical models
Numerical models
Orientation
Pattern analysis
Plate tectonics
Rock
Rocks
Rotation
Stiffness
Stress analysis
Stress distribution
Stress ratio
Stress state
Tectonics
Two dimensional analysis
title Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20state%20at%20faults:%20the%20influence%20of%20rock%20stiffness%20contrast,%20stress%20orientation,%20and%20ratio&rft.jtitle=Solid%20earth%20(G%C3%B6ttingen)&rft.au=Ziegler,%20Moritz%20O&rft.date=2024-08-23&rft.volume=15&rft.issue=8&rft.spage=1047&rft.epage=1063&rft.pages=1047-1063&rft.issn=1869-9510&rft.eissn=1869-9529&rft_id=info:doi/10.5194/se-15-1047-2024&rft_dat=%3Cgale_doaj_%3EA805874367%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d280t-4661c66d08ffa0bc50c6ec42c032f37816b9e488276039b129aa92b466640a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095826337&rft_id=info:pmid/&rft_galeid=A805874367&rfr_iscdi=true