Loading…
Spatially interacting phosphorylation sites and mutations in cancer
Advances in mass-spectrometry have generated increasingly large-scale proteomics datasets containing tens of thousands of phosphorylation sites (phosphosites) that require prioritization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-clustering of phosphosites and...
Saved in:
Published in: | Nature communications 2021-04, Vol.12 (1), p.2313-2313, Article 2313 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-19d7e1803821210186b2b9eb80c6de3e400d05c3fa077e993fa94c9999ddb4143 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-19d7e1803821210186b2b9eb80c6de3e400d05c3fa077e993fa94c9999ddb4143 |
container_end_page | 2313 |
container_issue | 1 |
container_start_page | 2313 |
container_title | Nature communications |
container_volume | 12 |
creator | Huang, Kuan-lin Scott, Adam D. Zhou, Daniel Cui Wang, Liang-Bo Weerasinghe, Amila Elmas, Abdulkadir Liu, Ruiyang Wu, Yige Wendl, Michael C. Wyczalkowski, Matthew A. Baral, Jessika Sengupta, Sohini Lai, Chin-Wen Ruggles, Kelly Payne, Samuel H. Raphael, Benjamin Fenyö, David Chen, Ken Mills, Gordon Ding, Li |
description | Advances in mass-spectrometry have generated increasingly large-scale proteomics datasets containing tens of thousands of phosphorylation sites (phosphosites) that require prioritization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-clustering of phosphosites and cancer mutations on protein structures. HotPho identifies 474 such hybrid clusters containing 1255 co-clustering phosphosites, including RET p.S904/Y928, the conserved HRAS/KRAS p.Y96, and IDH1 p.Y139/IDH2 p.Y179 that are adjacent to recurrent mutations on protein structures not found by linear proximity approaches. Hybrid clusters, enriched in histone and kinase domains, frequently include expression-associated mutations experimentally shown as activating and conferring genetic dependency. Approximately 300 co-clustering phosphosites are verified in patient samples of 5 cancer types or previously implicated in cancer, including CTNNB1 p.S29/Y30, EGFR p.S720, MAPK1 p.S142, and PTPN12 p.S275. In summary, systematic 3D clustering analysis highlights nearly 3,000 likely functional mutations and over 1000 cancer phosphosites for downstream investigation and evaluation of potential clinical relevance.
Dysregulated phosphorylation is well-known in cancers, but it has largely been studied in isolation from mutations. Here the authors introduce HotPho, a tool that can discover spatial interactions between phosphosites and mutations, which are associated with activating mutation and genetic dependencies in cancer. |
doi_str_mv | 10.1038/s41467-021-22481-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f38865e7329d4929ad5179de6e149dde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f38865e7329d4929ad5179de6e149dde</doaj_id><sourcerecordid>2514870524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-19d7e1803821210186b2b9eb80c6de3e400d05c3fa077e993fa94c9999ddb4143</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rLuH_AgDV68tOazk1wEGfxYWPCgnkM6qZnN0JOMSdpl_r2Z6XXd9WAgJFS99aQqL0IvCX5LMFPvCid8kD2mpKeUK9LfPkHnFHPSE0nZ0wf3M3RZyha3xTRRnD9HZ4wpKQaBz9Hq297WYKfp0IVYIVtXQ9x0-5tU2s6HqWVT7EqoUDobfbeb6ylUmr5zNjrIL9CztZ0KXN6dF-jHp4_fV1_666-fr1YfrnsnOK490V4CUa15SijBRA0jHTWMCrvBAwOOscfCsbXFUoLW7aK50215P7Zp2QW6Wrg-2a3Z57Cz-WCSDeYUSHljbK7BTWDWTKlBgGRUe66ptl4QqT0MQHjDQWO9X1j7edyBdxBrttMj6ONMDDdmk34ZhYVQijTAmztATj9nKNXsQnEwTTZCmouhgohBtbeHJn39j3Sb5hzbVx1VXEks6HE6uqhcTqVkWN83Q7A5Wm4Wy02z3JwsN7et6NXDMe5L_hjcBGwRlJaKG8h_3_4P9jcTbbcg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514870524</pqid></control><display><type>article</type><title>Spatially interacting phosphorylation sites and mutations in cancer</title><source>PubMed Central(OA)</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Kuan-lin ; Scott, Adam D. ; Zhou, Daniel Cui ; Wang, Liang-Bo ; Weerasinghe, Amila ; Elmas, Abdulkadir ; Liu, Ruiyang ; Wu, Yige ; Wendl, Michael C. ; Wyczalkowski, Matthew A. ; Baral, Jessika ; Sengupta, Sohini ; Lai, Chin-Wen ; Ruggles, Kelly ; Payne, Samuel H. ; Raphael, Benjamin ; Fenyö, David ; Chen, Ken ; Mills, Gordon ; Ding, Li</creator><creatorcontrib>Huang, Kuan-lin ; Scott, Adam D. ; Zhou, Daniel Cui ; Wang, Liang-Bo ; Weerasinghe, Amila ; Elmas, Abdulkadir ; Liu, Ruiyang ; Wu, Yige ; Wendl, Michael C. ; Wyczalkowski, Matthew A. ; Baral, Jessika ; Sengupta, Sohini ; Lai, Chin-Wen ; Ruggles, Kelly ; Payne, Samuel H. ; Raphael, Benjamin ; Fenyö, David ; Chen, Ken ; Mills, Gordon ; Ding, Li</creatorcontrib><description>Advances in mass-spectrometry have generated increasingly large-scale proteomics datasets containing tens of thousands of phosphorylation sites (phosphosites) that require prioritization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-clustering of phosphosites and cancer mutations on protein structures. HotPho identifies 474 such hybrid clusters containing 1255 co-clustering phosphosites, including RET p.S904/Y928, the conserved HRAS/KRAS p.Y96, and IDH1 p.Y139/IDH2 p.Y179 that are adjacent to recurrent mutations on protein structures not found by linear proximity approaches. Hybrid clusters, enriched in histone and kinase domains, frequently include expression-associated mutations experimentally shown as activating and conferring genetic dependency. Approximately 300 co-clustering phosphosites are verified in patient samples of 5 cancer types or previously implicated in cancer, including CTNNB1 p.S29/Y30, EGFR p.S720, MAPK1 p.S142, and PTPN12 p.S275. In summary, systematic 3D clustering analysis highlights nearly 3,000 likely functional mutations and over 1000 cancer phosphosites for downstream investigation and evaluation of potential clinical relevance.
Dysregulated phosphorylation is well-known in cancers, but it has largely been studied in isolation from mutations. Here the authors introduce HotPho, a tool that can discover spatial interactions between phosphosites and mutations, which are associated with activating mutation and genetic dependencies in cancer.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-22481-w</identifier><identifier>PMID: 33875650</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/23 ; 631/114 ; 631/61/475 ; 692/4028/67 ; 82/58 ; beta Catenin - metabolism ; Binding Sites - genetics ; Bioinformatics ; Cancer ; Cluster Analysis ; Clustering ; Computational Biology - methods ; Epidermal growth factor receptors ; ErbB Receptors - metabolism ; Histones ; Humanities and Social Sciences ; Humans ; Kinases ; Mass Spectrometry - methods ; multidisciplinary ; Mutation ; Neoplasms - genetics ; Neoplasms - metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 12 - metabolism ; Proteins ; Proteomics ; Proteomics - methods ; Science ; Science (multidisciplinary) ; Spectrometry</subject><ispartof>Nature communications, 2021-04, Vol.12 (1), p.2313-2313, Article 2313</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-19d7e1803821210186b2b9eb80c6de3e400d05c3fa077e993fa94c9999ddb4143</citedby><cites>FETCH-LOGICAL-c540t-19d7e1803821210186b2b9eb80c6de3e400d05c3fa077e993fa94c9999ddb4143</cites><orcidid>0000-0002-5537-5817 ; 0000-0001-6977-9348 ; 0000-0003-4013-5279 ; 0000-0002-7999-5770 ; 0000-0003-3568-5823 ; 0000-0002-8351-1994 ; 0000-0001-5049-3825 ; 0000-0002-0144-9614 ; 0000-0003-4197-551X ; 0000-0002-7834-2778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2514870524/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2514870524?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33875650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Kuan-lin</creatorcontrib><creatorcontrib>Scott, Adam D.</creatorcontrib><creatorcontrib>Zhou, Daniel Cui</creatorcontrib><creatorcontrib>Wang, Liang-Bo</creatorcontrib><creatorcontrib>Weerasinghe, Amila</creatorcontrib><creatorcontrib>Elmas, Abdulkadir</creatorcontrib><creatorcontrib>Liu, Ruiyang</creatorcontrib><creatorcontrib>Wu, Yige</creatorcontrib><creatorcontrib>Wendl, Michael C.</creatorcontrib><creatorcontrib>Wyczalkowski, Matthew A.</creatorcontrib><creatorcontrib>Baral, Jessika</creatorcontrib><creatorcontrib>Sengupta, Sohini</creatorcontrib><creatorcontrib>Lai, Chin-Wen</creatorcontrib><creatorcontrib>Ruggles, Kelly</creatorcontrib><creatorcontrib>Payne, Samuel H.</creatorcontrib><creatorcontrib>Raphael, Benjamin</creatorcontrib><creatorcontrib>Fenyö, David</creatorcontrib><creatorcontrib>Chen, Ken</creatorcontrib><creatorcontrib>Mills, Gordon</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><title>Spatially interacting phosphorylation sites and mutations in cancer</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Advances in mass-spectrometry have generated increasingly large-scale proteomics datasets containing tens of thousands of phosphorylation sites (phosphosites) that require prioritization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-clustering of phosphosites and cancer mutations on protein structures. HotPho identifies 474 such hybrid clusters containing 1255 co-clustering phosphosites, including RET p.S904/Y928, the conserved HRAS/KRAS p.Y96, and IDH1 p.Y139/IDH2 p.Y179 that are adjacent to recurrent mutations on protein structures not found by linear proximity approaches. Hybrid clusters, enriched in histone and kinase domains, frequently include expression-associated mutations experimentally shown as activating and conferring genetic dependency. Approximately 300 co-clustering phosphosites are verified in patient samples of 5 cancer types or previously implicated in cancer, including CTNNB1 p.S29/Y30, EGFR p.S720, MAPK1 p.S142, and PTPN12 p.S275. In summary, systematic 3D clustering analysis highlights nearly 3,000 likely functional mutations and over 1000 cancer phosphosites for downstream investigation and evaluation of potential clinical relevance.
Dysregulated phosphorylation is well-known in cancers, but it has largely been studied in isolation from mutations. Here the authors introduce HotPho, a tool that can discover spatial interactions between phosphosites and mutations, which are associated with activating mutation and genetic dependencies in cancer.</description><subject>45</subject><subject>45/23</subject><subject>631/114</subject><subject>631/61/475</subject><subject>692/4028/67</subject><subject>82/58</subject><subject>beta Catenin - metabolism</subject><subject>Binding Sites - genetics</subject><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Computational Biology - methods</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - metabolism</subject><subject>Histones</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Kinases</subject><subject>Mass Spectrometry - methods</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 12 - metabolism</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrometry</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU2LFDEQhoMo7rLuH_AgDV68tOazk1wEGfxYWPCgnkM6qZnN0JOMSdpl_r2Z6XXd9WAgJFS99aQqL0IvCX5LMFPvCid8kD2mpKeUK9LfPkHnFHPSE0nZ0wf3M3RZyha3xTRRnD9HZ4wpKQaBz9Hq297WYKfp0IVYIVtXQ9x0-5tU2s6HqWVT7EqoUDobfbeb6ylUmr5zNjrIL9CztZ0KXN6dF-jHp4_fV1_666-fr1YfrnsnOK490V4CUa15SijBRA0jHTWMCrvBAwOOscfCsbXFUoLW7aK50215P7Zp2QW6Wrg-2a3Z57Cz-WCSDeYUSHljbK7BTWDWTKlBgGRUe66ptl4QqT0MQHjDQWO9X1j7edyBdxBrttMj6ONMDDdmk34ZhYVQijTAmztATj9nKNXsQnEwTTZCmouhgohBtbeHJn39j3Sb5hzbVx1VXEks6HE6uqhcTqVkWN83Q7A5Wm4Wy02z3JwsN7et6NXDMe5L_hjcBGwRlJaKG8h_3_4P9jcTbbcg</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Huang, Kuan-lin</creator><creator>Scott, Adam D.</creator><creator>Zhou, Daniel Cui</creator><creator>Wang, Liang-Bo</creator><creator>Weerasinghe, Amila</creator><creator>Elmas, Abdulkadir</creator><creator>Liu, Ruiyang</creator><creator>Wu, Yige</creator><creator>Wendl, Michael C.</creator><creator>Wyczalkowski, Matthew A.</creator><creator>Baral, Jessika</creator><creator>Sengupta, Sohini</creator><creator>Lai, Chin-Wen</creator><creator>Ruggles, Kelly</creator><creator>Payne, Samuel H.</creator><creator>Raphael, Benjamin</creator><creator>Fenyö, David</creator><creator>Chen, Ken</creator><creator>Mills, Gordon</creator><creator>Ding, Li</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5537-5817</orcidid><orcidid>https://orcid.org/0000-0001-6977-9348</orcidid><orcidid>https://orcid.org/0000-0003-4013-5279</orcidid><orcidid>https://orcid.org/0000-0002-7999-5770</orcidid><orcidid>https://orcid.org/0000-0003-3568-5823</orcidid><orcidid>https://orcid.org/0000-0002-8351-1994</orcidid><orcidid>https://orcid.org/0000-0001-5049-3825</orcidid><orcidid>https://orcid.org/0000-0002-0144-9614</orcidid><orcidid>https://orcid.org/0000-0003-4197-551X</orcidid><orcidid>https://orcid.org/0000-0002-7834-2778</orcidid></search><sort><creationdate>20210419</creationdate><title>Spatially interacting phosphorylation sites and mutations in cancer</title><author>Huang, Kuan-lin ; Scott, Adam D. ; Zhou, Daniel Cui ; Wang, Liang-Bo ; Weerasinghe, Amila ; Elmas, Abdulkadir ; Liu, Ruiyang ; Wu, Yige ; Wendl, Michael C. ; Wyczalkowski, Matthew A. ; Baral, Jessika ; Sengupta, Sohini ; Lai, Chin-Wen ; Ruggles, Kelly ; Payne, Samuel H. ; Raphael, Benjamin ; Fenyö, David ; Chen, Ken ; Mills, Gordon ; Ding, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-19d7e1803821210186b2b9eb80c6de3e400d05c3fa077e993fa94c9999ddb4143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45</topic><topic>45/23</topic><topic>631/114</topic><topic>631/61/475</topic><topic>692/4028/67</topic><topic>82/58</topic><topic>beta Catenin - metabolism</topic><topic>Binding Sites - genetics</topic><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Computational Biology - methods</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - metabolism</topic><topic>Histones</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Kinases</topic><topic>Mass Spectrometry - methods</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 12 - metabolism</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kuan-lin</creatorcontrib><creatorcontrib>Scott, Adam D.</creatorcontrib><creatorcontrib>Zhou, Daniel Cui</creatorcontrib><creatorcontrib>Wang, Liang-Bo</creatorcontrib><creatorcontrib>Weerasinghe, Amila</creatorcontrib><creatorcontrib>Elmas, Abdulkadir</creatorcontrib><creatorcontrib>Liu, Ruiyang</creatorcontrib><creatorcontrib>Wu, Yige</creatorcontrib><creatorcontrib>Wendl, Michael C.</creatorcontrib><creatorcontrib>Wyczalkowski, Matthew A.</creatorcontrib><creatorcontrib>Baral, Jessika</creatorcontrib><creatorcontrib>Sengupta, Sohini</creatorcontrib><creatorcontrib>Lai, Chin-Wen</creatorcontrib><creatorcontrib>Ruggles, Kelly</creatorcontrib><creatorcontrib>Payne, Samuel H.</creatorcontrib><creatorcontrib>Raphael, Benjamin</creatorcontrib><creatorcontrib>Fenyö, David</creatorcontrib><creatorcontrib>Chen, Ken</creatorcontrib><creatorcontrib>Mills, Gordon</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Kuan-lin</au><au>Scott, Adam D.</au><au>Zhou, Daniel Cui</au><au>Wang, Liang-Bo</au><au>Weerasinghe, Amila</au><au>Elmas, Abdulkadir</au><au>Liu, Ruiyang</au><au>Wu, Yige</au><au>Wendl, Michael C.</au><au>Wyczalkowski, Matthew A.</au><au>Baral, Jessika</au><au>Sengupta, Sohini</au><au>Lai, Chin-Wen</au><au>Ruggles, Kelly</au><au>Payne, Samuel H.</au><au>Raphael, Benjamin</au><au>Fenyö, David</au><au>Chen, Ken</au><au>Mills, Gordon</au><au>Ding, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially interacting phosphorylation sites and mutations in cancer</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2021-04-19</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>2313</spage><epage>2313</epage><pages>2313-2313</pages><artnum>2313</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Advances in mass-spectrometry have generated increasingly large-scale proteomics datasets containing tens of thousands of phosphorylation sites (phosphosites) that require prioritization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-clustering of phosphosites and cancer mutations on protein structures. HotPho identifies 474 such hybrid clusters containing 1255 co-clustering phosphosites, including RET p.S904/Y928, the conserved HRAS/KRAS p.Y96, and IDH1 p.Y139/IDH2 p.Y179 that are adjacent to recurrent mutations on protein structures not found by linear proximity approaches. Hybrid clusters, enriched in histone and kinase domains, frequently include expression-associated mutations experimentally shown as activating and conferring genetic dependency. Approximately 300 co-clustering phosphosites are verified in patient samples of 5 cancer types or previously implicated in cancer, including CTNNB1 p.S29/Y30, EGFR p.S720, MAPK1 p.S142, and PTPN12 p.S275. In summary, systematic 3D clustering analysis highlights nearly 3,000 likely functional mutations and over 1000 cancer phosphosites for downstream investigation and evaluation of potential clinical relevance.
Dysregulated phosphorylation is well-known in cancers, but it has largely been studied in isolation from mutations. Here the authors introduce HotPho, a tool that can discover spatial interactions between phosphosites and mutations, which are associated with activating mutation and genetic dependencies in cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33875650</pmid><doi>10.1038/s41467-021-22481-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5537-5817</orcidid><orcidid>https://orcid.org/0000-0001-6977-9348</orcidid><orcidid>https://orcid.org/0000-0003-4013-5279</orcidid><orcidid>https://orcid.org/0000-0002-7999-5770</orcidid><orcidid>https://orcid.org/0000-0003-3568-5823</orcidid><orcidid>https://orcid.org/0000-0002-8351-1994</orcidid><orcidid>https://orcid.org/0000-0001-5049-3825</orcidid><orcidid>https://orcid.org/0000-0002-0144-9614</orcidid><orcidid>https://orcid.org/0000-0003-4197-551X</orcidid><orcidid>https://orcid.org/0000-0002-7834-2778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-04, Vol.12 (1), p.2313-2313, Article 2313 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f38865e7329d4929ad5179de6e149dde |
source | PubMed Central(OA); Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 45 45/23 631/114 631/61/475 692/4028/67 82/58 beta Catenin - metabolism Binding Sites - genetics Bioinformatics Cancer Cluster Analysis Clustering Computational Biology - methods Epidermal growth factor receptors ErbB Receptors - metabolism Histones Humanities and Social Sciences Humans Kinases Mass Spectrometry - methods multidisciplinary Mutation Neoplasms - genetics Neoplasms - metabolism Phosphorylation Protein Tyrosine Phosphatase, Non-Receptor Type 12 - metabolism Proteins Proteomics Proteomics - methods Science Science (multidisciplinary) Spectrometry |
title | Spatially interacting phosphorylation sites and mutations in cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20interacting%20phosphorylation%20sites%20and%20mutations%20in%20cancer&rft.jtitle=Nature%20communications&rft.au=Huang,%20Kuan-lin&rft.date=2021-04-19&rft.volume=12&rft.issue=1&rft.spage=2313&rft.epage=2313&rft.pages=2313-2313&rft.artnum=2313&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-22481-w&rft_dat=%3Cproquest_doaj_%3E2514870524%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-19d7e1803821210186b2b9eb80c6de3e400d05c3fa077e993fa94c9999ddb4143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2514870524&rft_id=info:pmid/33875650&rfr_iscdi=true |