Loading…

Hybrid Control of Soft Robotic Manipulator

Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The...

Full description

Saved in:
Bibliographic Details
Published in:Actuators 2024-07, Vol.13 (7), p.242
Main Authors: Garriga-Casanovas, Arnau, Shakib, Fahim, Ferrandy, Varell, Franco, Enrico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43
container_end_page
container_issue 7
container_start_page 242
container_title Actuators
container_volume 13
creator Garriga-Casanovas, Arnau
Shakib, Fahim
Ferrandy, Varell
Franco, Enrico
description Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs.
doi_str_mv 10.3390/act13070242
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f38f7632ada44bc48f89ca76a6d11dbf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f38f7632ada44bc48f89ca76a6d11dbf</doaj_id><sourcerecordid>3084697685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGpP_oEFb8pqMsnm4yhFbaEi-HEOk2QjW9amZtND_72rFXEOM8Pw8szLS8g5o9ecG3qDvjBOFQUBR2QCVMmaamiO_-2nZDYMazqWYVxTPiGXi73LXajmaVNy6qsUq5cUS_WcXCqdrx5x0213PZaUz8hJxH5oZ79zSt7u717ni3r19LCc365qDw2UWgTqoMVGaxMggAbvjXBhbAFa5aOQCAheBg2SM6Wb6MDxKCVEMMEJPiXLAzckXNtt7j4w723Czv4cUn63mEdvfWsj11FJDhhQCOeFjtp4VBJlYCy4OLIuDqxtTp-7dih2nXZ5M9q3nGohjZK6GVVXB5XPaRhyG_--Mmq_s7X_suVfqbVqaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084697685</pqid></control><display><type>article</type><title>Hybrid Control of Soft Robotic Manipulator</title><source>Publicly Available Content Database</source><creator>Garriga-Casanovas, Arnau ; Shakib, Fahim ; Ferrandy, Varell ; Franco, Enrico</creator><creatorcontrib>Garriga-Casanovas, Arnau ; Shakib, Fahim ; Ferrandy, Varell ; Franco, Enrico</creatorcontrib><description>Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act13070242</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuation ; Closed loops ; closed-loop control ; Confined spaces ; Design ; Distance learning ; Feedback control ; Hybrid control ; Inverse kinematics ; Jacobians ; Kinematics ; Machine learning ; Manipulators ; Neural networks ; Robot arms ; Robot control ; Robot learning ; Robotic surgery ; Robots ; Soft robotics</subject><ispartof>Actuators, 2024-07, Vol.13 (7), p.242</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43</cites><orcidid>0000-0003-4569-5566 ; 0000-0001-9991-7377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084697685/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084697685?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Garriga-Casanovas, Arnau</creatorcontrib><creatorcontrib>Shakib, Fahim</creatorcontrib><creatorcontrib>Ferrandy, Varell</creatorcontrib><creatorcontrib>Franco, Enrico</creatorcontrib><title>Hybrid Control of Soft Robotic Manipulator</title><title>Actuators</title><description>Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs.</description><subject>Actuation</subject><subject>Closed loops</subject><subject>closed-loop control</subject><subject>Confined spaces</subject><subject>Design</subject><subject>Distance learning</subject><subject>Feedback control</subject><subject>Hybrid control</subject><subject>Inverse kinematics</subject><subject>Jacobians</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Manipulators</subject><subject>Neural networks</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robot learning</subject><subject>Robotic surgery</subject><subject>Robots</subject><subject>Soft robotics</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGpP_oEFb8pqMsnm4yhFbaEi-HEOk2QjW9amZtND_72rFXEOM8Pw8szLS8g5o9ecG3qDvjBOFQUBR2QCVMmaamiO_-2nZDYMazqWYVxTPiGXi73LXajmaVNy6qsUq5cUS_WcXCqdrx5x0213PZaUz8hJxH5oZ79zSt7u717ni3r19LCc365qDw2UWgTqoMVGaxMggAbvjXBhbAFa5aOQCAheBg2SM6Wb6MDxKCVEMMEJPiXLAzckXNtt7j4w723Czv4cUn63mEdvfWsj11FJDhhQCOeFjtp4VBJlYCy4OLIuDqxtTp-7dih2nXZ5M9q3nGohjZK6GVVXB5XPaRhyG_--Mmq_s7X_suVfqbVqaA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Garriga-Casanovas, Arnau</creator><creator>Shakib, Fahim</creator><creator>Ferrandy, Varell</creator><creator>Franco, Enrico</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4569-5566</orcidid><orcidid>https://orcid.org/0000-0001-9991-7377</orcidid></search><sort><creationdate>20240701</creationdate><title>Hybrid Control of Soft Robotic Manipulator</title><author>Garriga-Casanovas, Arnau ; Shakib, Fahim ; Ferrandy, Varell ; Franco, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Closed loops</topic><topic>closed-loop control</topic><topic>Confined spaces</topic><topic>Design</topic><topic>Distance learning</topic><topic>Feedback control</topic><topic>Hybrid control</topic><topic>Inverse kinematics</topic><topic>Jacobians</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Manipulators</topic><topic>Neural networks</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robot learning</topic><topic>Robotic surgery</topic><topic>Robots</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garriga-Casanovas, Arnau</creatorcontrib><creatorcontrib>Shakib, Fahim</creatorcontrib><creatorcontrib>Ferrandy, Varell</creatorcontrib><creatorcontrib>Franco, Enrico</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garriga-Casanovas, Arnau</au><au>Shakib, Fahim</au><au>Ferrandy, Varell</au><au>Franco, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Control of Soft Robotic Manipulator</atitle><jtitle>Actuators</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>13</volume><issue>7</issue><spage>242</spage><pages>242-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act13070242</doi><orcidid>https://orcid.org/0000-0003-4569-5566</orcidid><orcidid>https://orcid.org/0000-0001-9991-7377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-0825
ispartof Actuators, 2024-07, Vol.13 (7), p.242
issn 2076-0825
2076-0825
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f38f7632ada44bc48f89ca76a6d11dbf
source Publicly Available Content Database
subjects Actuation
Closed loops
closed-loop control
Confined spaces
Design
Distance learning
Feedback control
Hybrid control
Inverse kinematics
Jacobians
Kinematics
Machine learning
Manipulators
Neural networks
Robot arms
Robot control
Robot learning
Robotic surgery
Robots
Soft robotics
title Hybrid Control of Soft Robotic Manipulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Control%20of%20Soft%20Robotic%20Manipulator&rft.jtitle=Actuators&rft.au=Garriga-Casanovas,%20Arnau&rft.date=2024-07-01&rft.volume=13&rft.issue=7&rft.spage=242&rft.pages=242-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act13070242&rft_dat=%3Cproquest_doaj_%3E3084697685%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084697685&rft_id=info:pmid/&rfr_iscdi=true