Loading…
Hybrid Control of Soft Robotic Manipulator
Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The...
Saved in:
Published in: | Actuators 2024-07, Vol.13 (7), p.242 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43 |
container_end_page | |
container_issue | 7 |
container_start_page | 242 |
container_title | Actuators |
container_volume | 13 |
creator | Garriga-Casanovas, Arnau Shakib, Fahim Ferrandy, Varell Franco, Enrico |
description | Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs. |
doi_str_mv | 10.3390/act13070242 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f38f7632ada44bc48f89ca76a6d11dbf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f38f7632ada44bc48f89ca76a6d11dbf</doaj_id><sourcerecordid>3084697685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGpP_oEFb8pqMsnm4yhFbaEi-HEOk2QjW9amZtND_72rFXEOM8Pw8szLS8g5o9ecG3qDvjBOFQUBR2QCVMmaamiO_-2nZDYMazqWYVxTPiGXi73LXajmaVNy6qsUq5cUS_WcXCqdrx5x0213PZaUz8hJxH5oZ79zSt7u717ni3r19LCc365qDw2UWgTqoMVGaxMggAbvjXBhbAFa5aOQCAheBg2SM6Wb6MDxKCVEMMEJPiXLAzckXNtt7j4w723Czv4cUn63mEdvfWsj11FJDhhQCOeFjtp4VBJlYCy4OLIuDqxtTp-7dih2nXZ5M9q3nGohjZK6GVVXB5XPaRhyG_--Mmq_s7X_suVfqbVqaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084697685</pqid></control><display><type>article</type><title>Hybrid Control of Soft Robotic Manipulator</title><source>Publicly Available Content Database</source><creator>Garriga-Casanovas, Arnau ; Shakib, Fahim ; Ferrandy, Varell ; Franco, Enrico</creator><creatorcontrib>Garriga-Casanovas, Arnau ; Shakib, Fahim ; Ferrandy, Varell ; Franco, Enrico</creatorcontrib><description>Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act13070242</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuation ; Closed loops ; closed-loop control ; Confined spaces ; Design ; Distance learning ; Feedback control ; Hybrid control ; Inverse kinematics ; Jacobians ; Kinematics ; Machine learning ; Manipulators ; Neural networks ; Robot arms ; Robot control ; Robot learning ; Robotic surgery ; Robots ; Soft robotics</subject><ispartof>Actuators, 2024-07, Vol.13 (7), p.242</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43</cites><orcidid>0000-0003-4569-5566 ; 0000-0001-9991-7377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084697685/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084697685?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Garriga-Casanovas, Arnau</creatorcontrib><creatorcontrib>Shakib, Fahim</creatorcontrib><creatorcontrib>Ferrandy, Varell</creatorcontrib><creatorcontrib>Franco, Enrico</creatorcontrib><title>Hybrid Control of Soft Robotic Manipulator</title><title>Actuators</title><description>Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs.</description><subject>Actuation</subject><subject>Closed loops</subject><subject>closed-loop control</subject><subject>Confined spaces</subject><subject>Design</subject><subject>Distance learning</subject><subject>Feedback control</subject><subject>Hybrid control</subject><subject>Inverse kinematics</subject><subject>Jacobians</subject><subject>Kinematics</subject><subject>Machine learning</subject><subject>Manipulators</subject><subject>Neural networks</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robot learning</subject><subject>Robotic surgery</subject><subject>Robots</subject><subject>Soft robotics</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGpP_oEFb8pqMsnm4yhFbaEi-HEOk2QjW9amZtND_72rFXEOM8Pw8szLS8g5o9ecG3qDvjBOFQUBR2QCVMmaamiO_-2nZDYMazqWYVxTPiGXi73LXajmaVNy6qsUq5cUS_WcXCqdrx5x0213PZaUz8hJxH5oZ79zSt7u717ni3r19LCc365qDw2UWgTqoMVGaxMggAbvjXBhbAFa5aOQCAheBg2SM6Wb6MDxKCVEMMEJPiXLAzckXNtt7j4w723Czv4cUn63mEdvfWsj11FJDhhQCOeFjtp4VBJlYCy4OLIuDqxtTp-7dih2nXZ5M9q3nGohjZK6GVVXB5XPaRhyG_--Mmq_s7X_suVfqbVqaA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Garriga-Casanovas, Arnau</creator><creator>Shakib, Fahim</creator><creator>Ferrandy, Varell</creator><creator>Franco, Enrico</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4569-5566</orcidid><orcidid>https://orcid.org/0000-0001-9991-7377</orcidid></search><sort><creationdate>20240701</creationdate><title>Hybrid Control of Soft Robotic Manipulator</title><author>Garriga-Casanovas, Arnau ; Shakib, Fahim ; Ferrandy, Varell ; Franco, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Closed loops</topic><topic>closed-loop control</topic><topic>Confined spaces</topic><topic>Design</topic><topic>Distance learning</topic><topic>Feedback control</topic><topic>Hybrid control</topic><topic>Inverse kinematics</topic><topic>Jacobians</topic><topic>Kinematics</topic><topic>Machine learning</topic><topic>Manipulators</topic><topic>Neural networks</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robot learning</topic><topic>Robotic surgery</topic><topic>Robots</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garriga-Casanovas, Arnau</creatorcontrib><creatorcontrib>Shakib, Fahim</creatorcontrib><creatorcontrib>Ferrandy, Varell</creatorcontrib><creatorcontrib>Franco, Enrico</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garriga-Casanovas, Arnau</au><au>Shakib, Fahim</au><au>Ferrandy, Varell</au><au>Franco, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Control of Soft Robotic Manipulator</atitle><jtitle>Actuators</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>13</volume><issue>7</issue><spage>242</spage><pages>242-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>Soft robotic manipulators consisting of serially stacked segments combine actuation and structure in an integrated design. This design can be miniaturised while providing suitable actuation for potential applications that may include endoluminal surgery and inspections in confined environments. The control of these robots, however, remains challenging, due to the difficulty in accurately modelling the robots, in coping with their redundancies, and in solving their full inverse kinematics. In this work, we explore a hybrid approach to control serial soft robotic manipulators that combines machine learning (ML) to estimate the inverse kinematics with closed-loop control to compensate for the remaining errors. For the ML part, we compare various approaches, including both kernel-based learning and more general neural networks. We validate the selected ML model experimentally. For the closed-loop control part, we first explore Jacobian formulations using both synthetic models and numerical approximations from experimental data. We then implement integral control actions using both these Jacobians, and evaluate them experimentally. In an experimental validation, we demonstrate that the hybrid control approach achieves setpoint regulation in a robot with six inputs and four outputs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act13070242</doi><orcidid>https://orcid.org/0000-0003-4569-5566</orcidid><orcidid>https://orcid.org/0000-0001-9991-7377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-0825 |
ispartof | Actuators, 2024-07, Vol.13 (7), p.242 |
issn | 2076-0825 2076-0825 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f38f7632ada44bc48f89ca76a6d11dbf |
source | Publicly Available Content Database |
subjects | Actuation Closed loops closed-loop control Confined spaces Design Distance learning Feedback control Hybrid control Inverse kinematics Jacobians Kinematics Machine learning Manipulators Neural networks Robot arms Robot control Robot learning Robotic surgery Robots Soft robotics |
title | Hybrid Control of Soft Robotic Manipulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Control%20of%20Soft%20Robotic%20Manipulator&rft.jtitle=Actuators&rft.au=Garriga-Casanovas,%20Arnau&rft.date=2024-07-01&rft.volume=13&rft.issue=7&rft.spage=242&rft.pages=242-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act13070242&rft_dat=%3Cproquest_doaj_%3E3084697685%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-4d0b2ea5889d2d282cc94bdc94d2e7cf46a2a2c6d82631785fb2b3f662f29db43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084697685&rft_id=info:pmid/&rfr_iscdi=true |