Loading…
Optimizing computation offloading strategy in mobile edge computing based on swarm intelligence algorithms
As the technology of the Internet of Things (IoT) and mobile edge computing (MEC) develops, more and more tasks are offloaded to the edge servers to be computed. The offloading strategy performs an essential role in the progress of computation offloading. In a general scenario, the offloading strate...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2021-07, Vol.2021 (1), p.1-15, Article 36 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As the technology of the Internet of Things (IoT) and mobile edge computing (MEC) develops, more and more tasks are offloaded to the edge servers to be computed. The offloading strategy performs an essential role in the progress of computation offloading. In a general scenario, the offloading strategy should consider enough factors, and the strategy should be made as quickly as possible. While most of the existing model only considers one or two factors, we investigated a model considering three targets and improved it by normalizing each target in the model to eliminate the influence of dimensions. Then, grey wolf optimizer (GWO) is introduced to solve the improved model. To obtain better performance, we proposed an algorithm hybrid whale optimization algorithm (WOA) with GWO named GWO-WOA. And the improved algorithm is tested on our model. Finally, the results obtained by GWO-WOA, GWO, WOA, particle swarm optimization (PSO), and genetic algorithm (GA) are discussed. The results have shown the advantages of GWO-WOA. |
---|---|
ISSN: | 1687-6180 1687-6172 1687-6180 |
DOI: | 10.1186/s13634-021-00751-5 |