Loading…

Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed

This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of...

Full description

Saved in:
Bibliographic Details
Published in:Applied artificial intelligence 2023-12, Vol.37 (1)
Main Authors: Herrera, Leonardo, Jae Jun, Kim, Baker, Jeffrey, Agrawal, Brij N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573
cites cdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573
container_end_page
container_issue 1
container_start_page
container_title Applied artificial intelligence
container_volume 37
creator Herrera, Leonardo
Jae Jun, Kim
Baker, Jeffrey
Agrawal, Brij N.
description This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw.
doi_str_mv 10.1080/08839514.2022.2151191
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f3e1fdfe2c0341448b924dd7b497b4f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f3e1fdfe2c0341448b924dd7b497b4f8</doaj_id><sourcerecordid>3034594900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</originalsourceid><addsrcrecordid>eNp9kUFvGyEQhVHUSHGT_oRKSD2vCwuY3Vsd100sWbJUuVJvaBaGdK314gJW5H9fHKc55oAQw_feDDxCPnM25axhX1nTiFZxOa1ZXU9rrjhv-RWZlEtdzZRUH8jkzFRn6IZ8TGnHGONa8wn5_R3xQNcIcezHJ3oPCR3ddDu0mc5z7vPRIV2m3O8h92GkPkQKdF2wSO8R9nQRxhzDQH9iKib2D91iyh26O3LtYUj46XW_Jb9-LLeLx2q9eVgt5uvKSsVz1TnWCA8d1lpKr6yTMzdTrgYnWuSohRUapXo5onYcLPhOCK-lcOCVFrdkdfF1AXbmEMug8WQC9OalEOKTgZh7O6DxArl3HmvLhORSNl1bS-d0J9uyfFO8vly8DjH8PZZ3mF04xrGMb0SRqFa2jBVKXSgbQ0oR_VtXzsw5EPM_EHMOxLwGUnTfLrp-LL-4h-cQB2cynIYQfYTR9qXN-xb_AElfkcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034594900</pqid></control><display><type>article</type><title>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Taylor &amp; Francis Open Access(OpenAccess)</source><creator>Herrera, Leonardo ; Jae Jun, Kim ; Baker, Jeffrey ; Agrawal, Brij N.</creator><creatorcontrib>Herrera, Leonardo ; Jae Jun, Kim ; Baker, Jeffrey ; Agrawal, Brij N.</creatorcontrib><description>This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2022.2151191</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Attitudes ; Deep learning ; Errors ; Euler angles ; Extended Kalman filter ; Laser beams ; Lasers ; Pitch (inclination) ; Rolling motion ; Rotation ; Synthetic data ; Test stands ; Three dimensional printing ; Unmanned aerial vehicles ; Yaw</subject><ispartof>Applied artificial intelligence, 2023-12, Vol.37 (1)</ispartof><rights>2022 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2022</rights><rights>2022 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</citedby><cites>FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</cites><orcidid>0000-0001-8989-0617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/08839514.2022.2151191$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/08839514.2022.2151191$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Herrera, Leonardo</creatorcontrib><creatorcontrib>Jae Jun, Kim</creatorcontrib><creatorcontrib>Baker, Jeffrey</creatorcontrib><creatorcontrib>Agrawal, Brij N.</creatorcontrib><title>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</title><title>Applied artificial intelligence</title><description>This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw.</description><subject>Attitudes</subject><subject>Deep learning</subject><subject>Errors</subject><subject>Euler angles</subject><subject>Extended Kalman filter</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Pitch (inclination)</subject><subject>Rolling motion</subject><subject>Rotation</subject><subject>Synthetic data</subject><subject>Test stands</subject><subject>Three dimensional printing</subject><subject>Unmanned aerial vehicles</subject><subject>Yaw</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFvGyEQhVHUSHGT_oRKSD2vCwuY3Vsd100sWbJUuVJvaBaGdK314gJW5H9fHKc55oAQw_feDDxCPnM25axhX1nTiFZxOa1ZXU9rrjhv-RWZlEtdzZRUH8jkzFRn6IZ8TGnHGONa8wn5_R3xQNcIcezHJ3oPCR3ddDu0mc5z7vPRIV2m3O8h92GkPkQKdF2wSO8R9nQRxhzDQH9iKib2D91iyh26O3LtYUj46XW_Jb9-LLeLx2q9eVgt5uvKSsVz1TnWCA8d1lpKr6yTMzdTrgYnWuSohRUapXo5onYcLPhOCK-lcOCVFrdkdfF1AXbmEMug8WQC9OalEOKTgZh7O6DxArl3HmvLhORSNl1bS-d0J9uyfFO8vly8DjH8PZZ3mF04xrGMb0SRqFa2jBVKXSgbQ0oR_VtXzsw5EPM_EHMOxLwGUnTfLrp-LL-4h-cQB2cynIYQfYTR9qXN-xb_AElfkcA</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Herrera, Leonardo</creator><creator>Jae Jun, Kim</creator><creator>Baker, Jeffrey</creator><creator>Agrawal, Brij N.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8989-0617</orcidid></search><sort><creationdate>20231231</creationdate><title>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</title><author>Herrera, Leonardo ; Jae Jun, Kim ; Baker, Jeffrey ; Agrawal, Brij N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attitudes</topic><topic>Deep learning</topic><topic>Errors</topic><topic>Euler angles</topic><topic>Extended Kalman filter</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Pitch (inclination)</topic><topic>Rolling motion</topic><topic>Rotation</topic><topic>Synthetic data</topic><topic>Test stands</topic><topic>Three dimensional printing</topic><topic>Unmanned aerial vehicles</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera, Leonardo</creatorcontrib><creatorcontrib>Jae Jun, Kim</creatorcontrib><creatorcontrib>Baker, Jeffrey</creatorcontrib><creatorcontrib>Agrawal, Brij N.</creatorcontrib><collection>Taylor &amp; Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera, Leonardo</au><au>Jae Jun, Kim</au><au>Baker, Jeffrey</au><au>Agrawal, Brij N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</atitle><jtitle>Applied artificial intelligence</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>37</volume><issue>1</issue><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/08839514.2022.2151191</doi><orcidid>https://orcid.org/0000-0001-8989-0617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-9514
ispartof Applied artificial intelligence, 2023-12, Vol.37 (1)
issn 0883-9514
1087-6545
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f3e1fdfe2c0341448b924dd7b497b4f8
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Taylor & Francis Open Access(OpenAccess)
subjects Attitudes
Deep learning
Errors
Euler angles
Extended Kalman filter
Laser beams
Lasers
Pitch (inclination)
Rolling motion
Rotation
Synthetic data
Test stands
Three dimensional printing
Unmanned aerial vehicles
Yaw
title Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Based%20Object%20Attitude%20Estimation%20for%20a%20Laser%20Beam%20Control%20Research%20Testbed&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Herrera,%20Leonardo&rft.date=2023-12-31&rft.volume=37&rft.issue=1&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2022.2151191&rft_dat=%3Cproquest_doaj_%3E3034594900%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034594900&rft_id=info:pmid/&rfr_iscdi=true