Loading…
Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed
This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of...
Saved in:
Published in: | Applied artificial intelligence 2023-12, Vol.37 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Applied artificial intelligence |
container_volume | 37 |
creator | Herrera, Leonardo Jae Jun, Kim Baker, Jeffrey Agrawal, Brij N. |
description | This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw. |
doi_str_mv | 10.1080/08839514.2022.2151191 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f3e1fdfe2c0341448b924dd7b497b4f8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f3e1fdfe2c0341448b924dd7b497b4f8</doaj_id><sourcerecordid>3034594900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</originalsourceid><addsrcrecordid>eNp9kUFvGyEQhVHUSHGT_oRKSD2vCwuY3Vsd100sWbJUuVJvaBaGdK314gJW5H9fHKc55oAQw_feDDxCPnM25axhX1nTiFZxOa1ZXU9rrjhv-RWZlEtdzZRUH8jkzFRn6IZ8TGnHGONa8wn5_R3xQNcIcezHJ3oPCR3ddDu0mc5z7vPRIV2m3O8h92GkPkQKdF2wSO8R9nQRxhzDQH9iKib2D91iyh26O3LtYUj46XW_Jb9-LLeLx2q9eVgt5uvKSsVz1TnWCA8d1lpKr6yTMzdTrgYnWuSohRUapXo5onYcLPhOCK-lcOCVFrdkdfF1AXbmEMug8WQC9OalEOKTgZh7O6DxArl3HmvLhORSNl1bS-d0J9uyfFO8vly8DjH8PZZ3mF04xrGMb0SRqFa2jBVKXSgbQ0oR_VtXzsw5EPM_EHMOxLwGUnTfLrp-LL-4h-cQB2cynIYQfYTR9qXN-xb_AElfkcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034594900</pqid></control><display><type>article</type><title>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Taylor & Francis Open Access(OpenAccess)</source><creator>Herrera, Leonardo ; Jae Jun, Kim ; Baker, Jeffrey ; Agrawal, Brij N.</creator><creatorcontrib>Herrera, Leonardo ; Jae Jun, Kim ; Baker, Jeffrey ; Agrawal, Brij N.</creatorcontrib><description>This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2022.2151191</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Attitudes ; Deep learning ; Errors ; Euler angles ; Extended Kalman filter ; Laser beams ; Lasers ; Pitch (inclination) ; Rolling motion ; Rotation ; Synthetic data ; Test stands ; Three dimensional printing ; Unmanned aerial vehicles ; Yaw</subject><ispartof>Applied artificial intelligence, 2023-12, Vol.37 (1)</ispartof><rights>2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022</rights><rights>2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</citedby><cites>FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</cites><orcidid>0000-0001-8989-0617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/08839514.2022.2151191$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/08839514.2022.2151191$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Herrera, Leonardo</creatorcontrib><creatorcontrib>Jae Jun, Kim</creatorcontrib><creatorcontrib>Baker, Jeffrey</creatorcontrib><creatorcontrib>Agrawal, Brij N.</creatorcontrib><title>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</title><title>Applied artificial intelligence</title><description>This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw.</description><subject>Attitudes</subject><subject>Deep learning</subject><subject>Errors</subject><subject>Euler angles</subject><subject>Extended Kalman filter</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Pitch (inclination)</subject><subject>Rolling motion</subject><subject>Rotation</subject><subject>Synthetic data</subject><subject>Test stands</subject><subject>Three dimensional printing</subject><subject>Unmanned aerial vehicles</subject><subject>Yaw</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFvGyEQhVHUSHGT_oRKSD2vCwuY3Vsd100sWbJUuVJvaBaGdK314gJW5H9fHKc55oAQw_feDDxCPnM25axhX1nTiFZxOa1ZXU9rrjhv-RWZlEtdzZRUH8jkzFRn6IZ8TGnHGONa8wn5_R3xQNcIcezHJ3oPCR3ddDu0mc5z7vPRIV2m3O8h92GkPkQKdF2wSO8R9nQRxhzDQH9iKib2D91iyh26O3LtYUj46XW_Jb9-LLeLx2q9eVgt5uvKSsVz1TnWCA8d1lpKr6yTMzdTrgYnWuSohRUapXo5onYcLPhOCK-lcOCVFrdkdfF1AXbmEMug8WQC9OalEOKTgZh7O6DxArl3HmvLhORSNl1bS-d0J9uyfFO8vly8DjH8PZZ3mF04xrGMb0SRqFa2jBVKXSgbQ0oR_VtXzsw5EPM_EHMOxLwGUnTfLrp-LL-4h-cQB2cynIYQfYTR9qXN-xb_AElfkcA</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Herrera, Leonardo</creator><creator>Jae Jun, Kim</creator><creator>Baker, Jeffrey</creator><creator>Agrawal, Brij N.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8989-0617</orcidid></search><sort><creationdate>20231231</creationdate><title>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</title><author>Herrera, Leonardo ; Jae Jun, Kim ; Baker, Jeffrey ; Agrawal, Brij N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attitudes</topic><topic>Deep learning</topic><topic>Errors</topic><topic>Euler angles</topic><topic>Extended Kalman filter</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Pitch (inclination)</topic><topic>Rolling motion</topic><topic>Rotation</topic><topic>Synthetic data</topic><topic>Test stands</topic><topic>Three dimensional printing</topic><topic>Unmanned aerial vehicles</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera, Leonardo</creatorcontrib><creatorcontrib>Jae Jun, Kim</creatorcontrib><creatorcontrib>Baker, Jeffrey</creatorcontrib><creatorcontrib>Agrawal, Brij N.</creatorcontrib><collection>Taylor & Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera, Leonardo</au><au>Jae Jun, Kim</au><au>Baker, Jeffrey</au><au>Agrawal, Brij N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed</atitle><jtitle>Applied artificial intelligence</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>37</volume><issue>1</issue><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>This paper presents an object attitude estimation method using a 2D object image for a Laser Beam Control Research Testbed (LBCRT). Motivated by emerging Deep Learning (DL) techniques, a DL model that can estimate the attitude of a rotating object represented by Euler angles is developed. Instead of synthetic data for training and validation of the model, customized data is experimentally created using the laboratory testbed developed at the Naval Postgraduate School. The data consists of Short Wave Infra-Red (SWIR) images of a 3D-printed Unmanned Aerial Vehicle (UAV) model with varying attitudes and associated Euler angle labels. In the testbed, the estimated attitude is used to aim a laser beam to a specific point of the rotating model UAV object. The attitude estimation model is trained with 1684 UAV images and validated with 421 UAV images not used in the model training. The validation results show the Root-Mean-Square (RMS) angle estimation errors of 6.51 degrees in pitch, 2.74 degrees in roll, and 2.51 degrees in yaw. The Extended Kalman Filter (EKF) is also integrated to show the reduced RMS estimation errors of 1.36 degrees in pitch, 1.20 degrees in roll, and 1.52 degrees in yaw.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/08839514.2022.2151191</doi><orcidid>https://orcid.org/0000-0001-8989-0617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-9514 |
ispartof | Applied artificial intelligence, 2023-12, Vol.37 (1) |
issn | 0883-9514 1087-6545 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f3e1fdfe2c0341448b924dd7b497b4f8 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Taylor & Francis Open Access(OpenAccess) |
subjects | Attitudes Deep learning Errors Euler angles Extended Kalman filter Laser beams Lasers Pitch (inclination) Rolling motion Rotation Synthetic data Test stands Three dimensional printing Unmanned aerial vehicles Yaw |
title | Deep Learning Based Object Attitude Estimation for a Laser Beam Control Research Testbed |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Based%20Object%20Attitude%20Estimation%20for%20a%20Laser%20Beam%20Control%20Research%20Testbed&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Herrera,%20Leonardo&rft.date=2023-12-31&rft.volume=37&rft.issue=1&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2022.2151191&rft_dat=%3Cproquest_doaj_%3E3034594900%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-bd083fabe2744f5cd46d65d2ad39e1e73c37e45ad39ee7d1acafb33f743daf573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034594900&rft_id=info:pmid/&rfr_iscdi=true |