Loading…
SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION
3D point cloud segmentation is computationally intensive due to the lack of inherent structural information and the unstructured nature of the point cloud data, which hinders the identification and connection of neighboring points. Understanding the structure of the point cloud data plays a crucial...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1666 |
container_issue | |
container_start_page | 1659 |
container_title | |
container_volume | XLVIII-1/W2-2023 |
creator | Rai, A. Srivastava, N. Khoshelham, K. Jain, K. |
description | 3D point cloud segmentation is computationally intensive due to the lack of inherent structural information and the unstructured nature of the point cloud data, which hinders the identification and connection of neighboring points. Understanding the structure of the point cloud data plays a crucial role in obtaining a meaningful and accurate representation of the underlying 3D environment. In this paper, we propose an algorithm that builds on existing state-of-the-art techniques of 2D image segmentation and point cloud registration to enrich point clouds with semantic information. DeepLab2 with ResNet50 as backbone architecture trained on the COCO dataset is used for indoor scene semantic segmentation into several classes like wall, floor, ceiling, doors, and windows. Semantic information from 2D images is propagated along with other input data, i.e., RGB images, depth images, and sensor information to generate 3D point clouds with semantic information. Iterative Closest Point (ICP) algorithm is used for the pair-wise registration of consecutive point clouds and finally, optimization is applied using the pose graph optimization on the whole set of point clouds to generate the combined point cloud of the whole scene. 3D point cloud of the whole scene contains pseudo-color information which denotes the semantic class to which each point belongs. The proposed methodology use an off-the-shelf 2D semantic segmentation deep learning model to semantically segment 3D point clouds collected using handheld mobile LiDAR sensor. We demonstrate a comparison of the accuracy achieved compared to a manually segmented point cloud on an in-house dataset as well as a 2D3DS benchmark dataset. |
doi_str_mv | 10.5194/isprs-archives-XLVIII-1-W2-2023-1659-2023 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f411e59f22fd4bc4868866e16d5022d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f411e59f22fd4bc4868866e16d5022d1</doaj_id><sourcerecordid>2901462910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-82541db7d97192c6a8b1d32b046d426c87dd67202734abdec45d78d6ccca38243</originalsourceid><addsrcrecordid>eNpNkV9PgzAUxYnRxGXuO5D4XG0vpcDjZGxrsoFxzPnWlBaUZcpsNxO_vcD893RPbu499-T-HIcQfOOTiN7Wdm8skka91B-lRU-LR845ImgDCDB4iDA_6tWZM4B2AUXYo-f_9KUzsnaLMSaUMR_7A-dulSzHac5jN0kfeDxfJmnuZlPXm7j3GW91vMjWk5W7XvF05sLE5cvxLHFXyaybHOc8S6-ci0rubDn6rkNnPU3yeI4W2YzH4wVSXggHFIJPiS4CHQUkAsVkWBDtQYEp0xSYCgOtWdCmDzwqC10q6usg1EwpJVsD6g0dfvLVjdyKvalfpfkUjaxF32jMs5DmUKtdKSpKSOlHFUClaaFoyMKQsZIw7WMATVqv65PX3jTvx9IexLY5mrc2voCo-w5EBP9dVKax1pTV71WCRUdE9ETEDxFxIiKI2IDoOIiOSK-8LwGZflk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2901462910</pqid></control><display><type>conference_proceeding</type><title>SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Rai, A. ; Srivastava, N. ; Khoshelham, K. ; Jain, K.</creator><creatorcontrib>Rai, A. ; Srivastava, N. ; Khoshelham, K. ; Jain, K.</creatorcontrib><description>3D point cloud segmentation is computationally intensive due to the lack of inherent structural information and the unstructured nature of the point cloud data, which hinders the identification and connection of neighboring points. Understanding the structure of the point cloud data plays a crucial role in obtaining a meaningful and accurate representation of the underlying 3D environment. In this paper, we propose an algorithm that builds on existing state-of-the-art techniques of 2D image segmentation and point cloud registration to enrich point clouds with semantic information. DeepLab2 with ResNet50 as backbone architecture trained on the COCO dataset is used for indoor scene semantic segmentation into several classes like wall, floor, ceiling, doors, and windows. Semantic information from 2D images is propagated along with other input data, i.e., RGB images, depth images, and sensor information to generate 3D point clouds with semantic information. Iterative Closest Point (ICP) algorithm is used for the pair-wise registration of consecutive point clouds and finally, optimization is applied using the pose graph optimization on the whole set of point clouds to generate the combined point cloud of the whole scene. 3D point cloud of the whole scene contains pseudo-color information which denotes the semantic class to which each point belongs. The proposed methodology use an off-the-shelf 2D semantic segmentation deep learning model to semantically segment 3D point clouds collected using handheld mobile LiDAR sensor. We demonstrate a comparison of the accuracy achieved compared to a manually segmented point cloud on an in-house dataset as well as a 2D3DS benchmark dataset.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLVIII-1-W2-2023-1659-2023</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Algorithms ; Cloud computing ; Color imagery ; Datasets ; Image segmentation ; Iterative algorithms ; Lidar ; Machine learning ; Optimization ; Semantic segmentation ; Semantics ; Sensors ; Three dimensional models ; Unstructured data</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2023, Vol.XLVIII-1/W2-2023, p.1659-1666</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-6981-0362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2901462910?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Rai, A.</creatorcontrib><creatorcontrib>Srivastava, N.</creatorcontrib><creatorcontrib>Khoshelham, K.</creatorcontrib><creatorcontrib>Jain, K.</creatorcontrib><title>SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>3D point cloud segmentation is computationally intensive due to the lack of inherent structural information and the unstructured nature of the point cloud data, which hinders the identification and connection of neighboring points. Understanding the structure of the point cloud data plays a crucial role in obtaining a meaningful and accurate representation of the underlying 3D environment. In this paper, we propose an algorithm that builds on existing state-of-the-art techniques of 2D image segmentation and point cloud registration to enrich point clouds with semantic information. DeepLab2 with ResNet50 as backbone architecture trained on the COCO dataset is used for indoor scene semantic segmentation into several classes like wall, floor, ceiling, doors, and windows. Semantic information from 2D images is propagated along with other input data, i.e., RGB images, depth images, and sensor information to generate 3D point clouds with semantic information. Iterative Closest Point (ICP) algorithm is used for the pair-wise registration of consecutive point clouds and finally, optimization is applied using the pose graph optimization on the whole set of point clouds to generate the combined point cloud of the whole scene. 3D point cloud of the whole scene contains pseudo-color information which denotes the semantic class to which each point belongs. The proposed methodology use an off-the-shelf 2D semantic segmentation deep learning model to semantically segment 3D point clouds collected using handheld mobile LiDAR sensor. We demonstrate a comparison of the accuracy achieved compared to a manually segmented point cloud on an in-house dataset as well as a 2D3DS benchmark dataset.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Color imagery</subject><subject>Datasets</subject><subject>Image segmentation</subject><subject>Iterative algorithms</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Three dimensional models</subject><subject>Unstructured data</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9PgzAUxYnRxGXuO5D4XG0vpcDjZGxrsoFxzPnWlBaUZcpsNxO_vcD893RPbu499-T-HIcQfOOTiN7Wdm8skka91B-lRU-LR845ImgDCDB4iDA_6tWZM4B2AUXYo-f_9KUzsnaLMSaUMR_7A-dulSzHac5jN0kfeDxfJmnuZlPXm7j3GW91vMjWk5W7XvF05sLE5cvxLHFXyaybHOc8S6-ci0rubDn6rkNnPU3yeI4W2YzH4wVSXggHFIJPiS4CHQUkAsVkWBDtQYEp0xSYCgOtWdCmDzwqC10q6usg1EwpJVsD6g0dfvLVjdyKvalfpfkUjaxF32jMs5DmUKtdKSpKSOlHFUClaaFoyMKQsZIw7WMATVqv65PX3jTvx9IexLY5mrc2voCo-w5EBP9dVKax1pTV71WCRUdE9ETEDxFxIiKI2IDoOIiOSK-8LwGZflk</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Rai, A.</creator><creator>Srivastava, N.</creator><creator>Khoshelham, K.</creator><creator>Jain, K.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-6981-0362</orcidid></search><sort><creationdate>20231214</creationdate><title>SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION</title><author>Rai, A. ; Srivastava, N. ; Khoshelham, K. ; Jain, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-82541db7d97192c6a8b1d32b046d426c87dd67202734abdec45d78d6ccca38243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Color imagery</topic><topic>Datasets</topic><topic>Image segmentation</topic><topic>Iterative algorithms</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Three dimensional models</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, A.</creatorcontrib><creatorcontrib>Srivastava, N.</creatorcontrib><creatorcontrib>Khoshelham, K.</creatorcontrib><creatorcontrib>Jain, K.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, A.</au><au>Srivastava, N.</au><au>Khoshelham, K.</au><au>Jain, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION</atitle><btitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</btitle><date>2023-12-14</date><risdate>2023</risdate><volume>XLVIII-1/W2-2023</volume><spage>1659</spage><epage>1666</epage><pages>1659-1666</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>3D point cloud segmentation is computationally intensive due to the lack of inherent structural information and the unstructured nature of the point cloud data, which hinders the identification and connection of neighboring points. Understanding the structure of the point cloud data plays a crucial role in obtaining a meaningful and accurate representation of the underlying 3D environment. In this paper, we propose an algorithm that builds on existing state-of-the-art techniques of 2D image segmentation and point cloud registration to enrich point clouds with semantic information. DeepLab2 with ResNet50 as backbone architecture trained on the COCO dataset is used for indoor scene semantic segmentation into several classes like wall, floor, ceiling, doors, and windows. Semantic information from 2D images is propagated along with other input data, i.e., RGB images, depth images, and sensor information to generate 3D point clouds with semantic information. Iterative Closest Point (ICP) algorithm is used for the pair-wise registration of consecutive point clouds and finally, optimization is applied using the pose graph optimization on the whole set of point clouds to generate the combined point cloud of the whole scene. 3D point cloud of the whole scene contains pseudo-color information which denotes the semantic class to which each point belongs. The proposed methodology use an off-the-shelf 2D semantic segmentation deep learning model to semantically segment 3D point clouds collected using handheld mobile LiDAR sensor. We demonstrate a comparison of the accuracy achieved compared to a manually segmented point cloud on an in-house dataset as well as a 2D3DS benchmark dataset.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLVIII-1-W2-2023-1659-2023</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0002-6981-0362</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2023, Vol.XLVIII-1/W2-2023, p.1659-1666 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_f411e59f22fd4bc4868866e16d5022d1 |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Algorithms Cloud computing Color imagery Datasets Image segmentation Iterative algorithms Lidar Machine learning Optimization Semantic segmentation Semantics Sensors Three dimensional models Unstructured data |
title | SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SEMANTIC%20ENRICHMENT%20OF%203D%20POINT%20CLOUDS%20USING%202D%20IMAGE%20SEGMENTATION&rft.btitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Rai,%20A.&rft.date=2023-12-14&rft.volume=XLVIII-1/W2-2023&rft.spage=1659&rft.epage=1666&rft.pages=1659-1666&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLVIII-1-W2-2023-1659-2023&rft_dat=%3Cproquest_doaj_%3E2901462910%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-82541db7d97192c6a8b1d32b046d426c87dd67202734abdec45d78d6ccca38243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901462910&rft_id=info:pmid/&rfr_iscdi=true |